Comparative Analysis of Runge–Kutta and Backward Euler Methods for Modeling Monkeypox Transmission Dynamics

Main Article Content

Zabihullah Movaheedi
Abdul Razeq Rahmani

Abstract

Background: Monkeypox (Mpox) is a re-emerging zoonotic viral disease that poses an increasing threat to global public health. Mathematical modeling is a key tool for understanding transmission dynamics of diseases like Mpox and supporting effective control strategies. Reliable numerical methods are essential for solving the nonlinear differential equations arising from such models.


Materials: We developed a deterministic compartmental model to describe Mpox transmission between human and small mammal populations. Human compartments include susceptible, exposed, infected, isolated, and recovered individuals, with corresponding classes for small mammals. We solved the system of nonlinear ordinary differential equations using the fourth-order Runge–Kutta (RK4) method and the Backward Euler method. We validated the model using real outbreak data from the U.S. Clade II Mpox cases reported by the Centers for Disease Control and Prevention (CDC, 2025).


Results: Simulation results demonstrate that RK4 provides higher accuracy and faster convergence in non-stiff scenarios, making it suitable for short-term epidemic predictions. The Backward Euler method exhibits superior numerical stability for stiff systems, allowing reliable long-term simulations with larger time steps. Error and computational analyses confirm RK4’s efficiency, while Backward Euler ensures robustness in unstable dynamic regions. Data fitting verifies that RK4 produces closer short-term approximations, whereas Backward Euler yields smoother long-term trends.


Conclusion: Both numerical methods are effective for modeling Mpox transmission. RK4 is recommended for accurate short-term analysis, while Backward Euler is preferable for stiff epidemic dynamics requiring high stability. These results highlight the importance of appropriate numerical method selection in computational epidemiology.

Article Details

How to Cite
Movaheedi, Z., & Rahmani, A. R. (2026). Comparative Analysis of Runge–Kutta and Backward Euler Methods for Modeling Monkeypox Transmission Dynamics. Afghanistan Journal of Infectious Diseases, 4(1), 94–113. https://doi.org/10.60141/ajid.142
Section
Research Article

References

Brauer F. Mathematical epidemiology: Past, pre-sent, and future. Infect Dis Model. 2017;2(2):113–127.

Muhammad A, Khan M, DarAssi H, Ahmad I, Seyam NM, Alzahrani E. The transmission dynam-ics of an infectious disease model in fractional de-rivative with vaccination under real data. Comput Biol Med. 2024. doi:10.1016/j.compbiomed.2024.109069.

Reynolds MG, et al. Zoonotic viruses and global health: Mpox resurgence in a changing environ-ment. Lancet Infect Dis. 2019;19(4):e200–e209.

Huang Q, Sun Y, Jia M, Jiang M, Xu Y, Feng L, Yang W. An effectiveness of vaccination and quar-antine strategies for Mpox transmission on simulat-ed college campuses. Infect Dis Model. 2024. ;9(3):805–815. doi:10.1016/j.idm.2024.04.004.

Hurrelbrink A, Topirceanu A. On the impact of population density and mobility restrictions in the control of epidemic spreading. In: 2023 IEEE 17th International Symposium on Applied Computa-tional Intelligence and Informatics (SACI); 2023 May 11–13; Timisoara, Romania. IEEE; 2023. p. 177–182. doi:10.1109/SACI58269.2023.10158557.

Salih OM, AL-Jawary MA. Computational meth-ods for solving nonlinear ordinary differential equa-tions arising in engineering and applied sciences. Iraqi J Sci. 2023;64(8):4070–4091. doi:10.24996/ijs.2023.64.8.30.

Hoang MT, Ehrhardt M. Differential equation models for infectious diseases: Mathematical mod-eling, qualitative analysis, numerical methods and applications. SeMA. 2025;10:1–28. doi:10.1007/s40324-025-00404-9.

Singh JP, Kumar S, Baleanu D, Nisar KS. Mon-keypox viral transmission dynamics and fractional-order modeling with vaccination intervention. Frac-tals. 2023;31(10):2340096. doi:10.1142/S0218348X23400960.

Singh JP, Kumar S, Akgül A, et al. Cholera disease dynamics with vaccination control using delay dif-ferential equations. Sci Rep. 2024;14:17421. doi:10.1038/s41598-024-66580-2.

Singh JP, Abdeljawad T, Baleanu D, et al. Trans-mission dynamics of a novel fractional model for the Marburg virus. Eur Phys J Spec Top. 2023;232:2645–2655. doi:10.1140/epjs/s11734-023-00943-0.

Movaheedi Z. Analyzing the dynamic characteris-tics of a tuberculosis epidemic model using numeri-cal methods. Afghan J Infect Dis. 2024;2(2):57–76. doi:10.60141/AJID/V.2.I.2/8.

Ikhsani PN, Usman T, Ikhwan M. Optimal control on mathematical model of Mpox disease spread. Barekeng: J Math & App. 2025;19(1):477–490. doi:10.30598/barekengvol19iss1pp477-490

Rodrigues FA, Bryne TJ, Agrela FdA. Extending the hybrid SEIR model with vital dynamics: In-sights from monkeypox outbreaks in the US and Europe. J Bio Innov. 2025;14(1):16–26. doi:10.46344/JBINO.2025v14i01.02.

Bhunu CP, Mushayabasa S. Modelling the trans-mission dynamics of pox like infections. IAENG Int J Appl Math. 2011;41(2):141–149.

Peter OJ, Kumar S, Kumari N, et al. Transmission dynamics of Monkeypox virus: A mathematical modelling approach. Model Earth Syst Environ. 2021;7:3423–3434. doi:10.1007/s40808-021-01313-2.

Macrotrends. World death rate (1950–2025) [Inter-net]. 2025 [cited 2025 Dec 12]. Available from: https://www.macrotrends.net

Van den Driessche P, Watmough J. Reproduction numbers and sub threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180(1):29–48. doi:10.1016/S0025-5564(02)00002-6.

Castillo Chavez C, Song B. Dynamical models of tuberculosis and their applications. Math Biosci Eng. 2004;1(2):361–404. doi:10.3934/mbe.2004.1.361.

Rana PS, Sharma N. Mathematical modeling and stability analysis of a SI type model for HIV/AIDS. J Interdiscip Math. 2020;23(1):257–273. doi:10.1080/09720502.2020.1721921

Workineh Y, Mekonnen H, Belew B. Numerical methods for solving second order initial value prob-lems using Euler and Runge–Kutta methods. Front Appl Math Stat. 2024;10:1360628. doi:10.3389/fams.2024.1360628.

Inderjeet, Bhardwaj R. Numerical simulation of ordinary differential equations by Euler and Runge–Kutta technique. J Eng Comput Numer Anal Math. 2023;3(6):8–17. doi:10.55529/jecnam.36.8.17.

Olaniyan MA, Akanbi AS, Wusu K, Shonibare K. A four stage multiderivative explicit Runge–Kutta method for first order ordinary differential equa-tions. Appl Math Comput Sci. 2024;20(1):224–232.

Hamza Y, Hamisu M, Buhari A. A new fixed coef-ficient diagonally implicit block backward differen-tiation formula for stiff initial value problems. UMYU Sci J. 2024;5(1):1–12. doi:10.56919/usci.2431.001.

Sagir M, Abdullahi MS. A variable step size mul-ti block backward differentiation formula for stiff initial value problems. Eur J Stat. 2023;3(4):55–67.

Buhari Y, Hamza M, Hamisu M, Abasi N. A fifth order variable step size block backward differ-entiation formula with off step points. Appl Math Comput Intell. 2023;12(4):235–245.

Khalaf KAM, Khalaf BMS. Development of tech-nique of backward integration step by step for solve stiff initial value problems. Tikrit J Pure Sci. 2023;20(5):159–167. doi:10.25130/tjps.v20i5.1252.

Musa H. Two point diagonally implicit extended superclass of block backward differentiation formula for stiff initial value problems. J Appl Sci Innov Comput. 2022;3(2):1–15.

Movaheedi Z, Heravi B. Numerical analysis of ty-phoid fever spread using Runge Kutta and non-standard finite difference methods. Afghan J Infect Dis. 2025;3(1):56–73. doi:10.60141/ajid.68.

Centers for Disease Control and Prevention (CDC). Mpox: Data and research – case trends and de-mographics [Internet]. 2025 [cited 2025 Aug 12]. Available from: https://www.cdc.gov/mpox/data-research/cases/index.html

Idisi IO, Oshinubi K, Sewanu VB, Yahaya MM, Olagbami OS, Edogbanya HO. Investigating Mpox strain dynamics using computational and da-ta driven approaches. Viruses. 2025;17(2):154. doi:10.3390/v17020154.