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Background: Monkeypox (Mpox) is a re-emerging zoonotic viral disease that poses an
increasing threat to global public health. Mathematical modeling is a key tool for under-
standing transmission dynamics of diseases like Mpox and supporting effective control
strategies. Reliable numerical methods are essential for solving the nonlinear differential
equations arising from such models.

Materials: We developed a deterministic compartmental model to describe Mpox trans-
mission between human and small mammal populations. Human compartments include
susceptible, exposed, infected, isolated, and recovered individuals, with corresponding
classes for small mammals. We solved the system of nonlinear ordinary differential
equations using the fourth-order Runge—Kutta (RK4) method and the Backward Euler
method. We validated the model using real outbreak data from the U.S. Clade 11 Mpox
cases reported by the Centers for Disease Control and Prevention (CDC, 2025).
Results: Simulation results demonstrate that RK4 provides higher accuracy and faster
convergence in non-stiff scenarios, making it suitable for short-term epidemic predic-
tions. The Backward Euler method exhibits superior numerical stability for stiff systems,
allowing reliable long-term simulations with larger time steps. Error and computational
analyses confirm RK4’s efficiency, while Backward Euler ensures robustness in unsta-
ble dynamic regions. Data fitting verifies that RK4 produces closer short-term approxi-
mations, whereas Backward Euler yields smoother long-term trends.

Conclusion: Both numerical methods are effective for modeling Mpox transmission.
RK4 is recommended for accurate short-term analysis, while Backward Euler is prefer-
able for stiff epidemic dynamics requiring high stability. These results highlight the im-
portance of appropriate numerical method selection in computational epidemiology.

Keywords: Backward Euler Method, Compartmental Model, Mpox Transmission, Nu-
merical Methods, Runge-Kutta Method
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Introduction

Monkeypox (Mpox) has re-emerged in recent
years as a significant global public health threat,
marked by recurrent outbreaks across multiple
continents. As a zoonotic orthopoxvirus with
transmission routes involving both human—hu-
man and animal-human interactions, Mpox ex-
hibits complex epidemiological characteristics
that necessitate rigorous mathematical investiga-
tion. Understanding its transmission dynamics is
crucial not only for predicting epidemic trajecto-
ries but also for designing timely and effective
intervention strategies such as vaccination, iso-
lation, and mobility restrictions (1-3). Compart-
mental models—including SIR, SEIR, and their
extended structures—remain indispensable ana-
Iytical tools in such studies and have been suc-
cessfully applied to Mpox and related infectious
diseases (4-7).

The growing diversity of modeling approaches
in the recent literature highlights the need for
flexible mathematical frameworks that can cap-
ture key biological, environmental, and behav-
ioral features of emerging pathogens. For in-
stance, fractional-order models have been uti-
lized to examine Mpox transmission under vac-
cination interventions (8), while delay differen-
tial equation frameworks have been applied to
assess vaccination-driven cholera dynamics (9).
Similarly, fractional epidemic models have pro-
vided new insights into the transmission behav-
ior of the Marburg virus, demonstrating the
broader usefulness of non-standard dynamical
tools for studying emerging zoonoses (10).
These studies collectively emphasize that accu-
rate modelling depends not only on well-struc-
tured epidemiological assumptions but also on
the efficient and reliable numerical solution of
the underlying system of nonlinear differential
equations.

Because analytical solutions to such systems are
rarely available, numerical methods play a foun-
dational role in computational epidemiology.
The selection of an appropriate solver directly

influences the accuracy, stability, and computa-
tional cost of simulations. Explicit methods such
as the classical 4th-order Runge—Kutta (RK4)
scheme are widely used for their simplicity, high
accuracy, and effectiveness in non-stiff epi-
demic systems (6,11). However, epidemic mod-
els often exhibit stiff behavior—particularly dur-
ing rapid changes in incidence, strong isolation
effects, or high-frequency transmission events—
where explicit schemes may fail or require pro-
hibitively small step sizes. In such settings, im-
plicit solvers like the Backward Euler method
offer superior stability and robustness, making
them more suitable for long-term projections
and stiff epidemic phases (12, 13).

Despite the extensive use of these numerical
schemes in epidemiological modeling, direct
comparative analyses that evaluate their perfor-
mance on Mpox transmission models remain
limited. Therefore, there is a clear need to sys-
tematically assess how explicit and implicit nu-
merical solvers behave when applied to complex
epidemic systems with interacting human and
animal hosts.

Motivated by this gap, the present study pro-
vides a detailed comparative analysis of the RK4
and Backward Euler methods in the context of a
two-population Mpox transmission mode. By
examining accuracy, stability properties, con-
vergence behavior, and computational effi-
ciency, we aimed to identify the most suitable
numerical approach for different epidemic sce-
narios. Such an analysis not only improves
methodological understanding but also aims to
support the development of more reliable com-
putational frameworks for future Mpox forecasts
and broader infectious disease modeling appli-
cations, thereby enhancing the robustness and
credibility of numerical epidemic simulations.
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Methods

Mathematical Modeling of Mpox Transmission
We introduce a deterministic compartmental
model to illustrate the transmission dynamics of
Mpox, focusing on two primary populations: hu-
mans and small mammals. The human popula-
tion is divided into five compartments: suscepti-
ble individuals S;(t), exposed individuals E;(t),
infected individuals I;(t), isolated individuals
Qi(t), and recovered individuals R;(t). The
small mammal population consists of three com-
partments: susceptible small mammals S,(t),
exposed small mammals E (t), and infected
small mammals I;(t). Individuals enter the hu-
man population at a recruitment rate of 6;, while
small mammals are recruited at a rate of 6.
Transmission from infected small mammals to
humans occurs at a force of infection represented

by B;, and human-to-human transmission occurs
at rate f5,. Likewise, transmission among small
mammals is governed by S5, which denotes the
force of infection from infected small mammals
to susceptible ones. Exposed humans progress to
the infected class at rate a;, and some exposed
individuals transition to the isolated class at rate
a,. Exposed small mammals transition to the in-
fected small mammal class at rate a5. A fraction
of isolated humans who are not infected return
to the susceptible class at rate ¢. Confirmed iso-
lated cases further progress to the infected class
at rate t, and infected humans recover at rate 4.
Natural mortality affects humans and small
mammals at rates u; and ug, respectively. Dis-
ease-induced death occurs at rate §; for infected
humans and §; for infected small mammals. The
transitions between these compartments are il-
lustrated in Figure 1.
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Figure 1: Schematic overview of the model structure

The following set of nonlinear differential equa-
tions describes the model’s dynamics. Table 1
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provides the values, sources, and descriptions of
all parameters used in (Eq. 1).
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dSi Si
E = 9i — (,81]5 + ,lel)ﬁl - .uiSi + ¢Ql
dE; S;
d_tl = (Buls + B21)) ﬁll = (a1 + ay + W)E;
d,
ar = k- (i + 6 + DI
t
dQ;
Py aE; — (¢ +7+6; +p)0; (Eq.1)
dR;
E =1Q; + Al; — ;R;
s 1
at = 95 - BBSSIS N_s - AuSSS
dE

1
— = 335515_ - (.us + a3)Es

dt N,
dlg
a asEs — (us + 65)Is.

Table 1: Parameters values used in the Simulations.

Param- Description Value Unit Reference
eter

0; Rate of recruitment into the human population 1,160,000 Year ~! Estimated
R Recruitment rate for the small mammal popu- 200000  Year ! Estimated

lation
b1 Force of infection from Small mammals to 0.0025  Year 1! (14)
Human
Ba Force of infection from Human to Human 0.000063 Year ! (14)
B3 Force of infection from Small mammals to 0.0027  Year ! (14)
Small mammals
a, Rate of transition from exposed human to in- 0.2 Year ! (15)
fected human
a, Transition rate from exposed to isolated cases 2.0 Year ! (15)
as Transition from exposed small mammals to 3.0 Year 1 Assumed
infected small mammals

7 Fraction of those isolated that is not infected 2.0 Year ! (15)

T Progression from isolated to infected class 0.52 Year 71 (15)

A Humans recovery rate 0.83 Year 1 (16)

U Natural death rate of human 0.008 Year ~1 a7
Us Natural death rate of small mammals 0.002 Year 71 (14)
O Disease induced death rate for small mammals 0.5 Year ! (15)

5, Death rate due to disease for humans 0.2 Year 1 (18)

The model analysis (ans) _ 0, — (1 + BN,
On Human Population, N;=S;+E; + 1, + at

Q; + R;, the differential equation is given as:

dN;

— = 0= 8l — N,
Also, for the small mammal population N =
S¢+ E;+ I, and the associated differential

equations are as follows:

Theorem 1: Let (S;, E;, I;, Q;, R;, S, Eg, R) rep-
resent the solution of (Eg.1), given initial condi-
tions within a biologically feasible region A=
A; X Ag with:
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A= (SiE;, I;, Qi R;) € RE:N; < —
i

and

A= (S, Eg, R,) € R3: N, < Z—

then A is a non-negative invariant set.
Following the method of Rana and Sharma (19),
it follows that:

0 < N;(t) < N;(0)I7H® 4 ﬁ(1 — 7))
also o
Ny(2) < Ny(0)1~ 0Ot 4 22 (1 — =(usv0)t),
hence for t, the set A is positive invariant.

Mpox-Free Equilibrium State
This state occurs when no disease is present.
Therefore, in the absence of infection, we set
E;, I;,Q;,R;, Es and I to zero in (Eq. 1), and the
resulting solution yields the Mpox-free equilib-
rium states expressed as:

CDMFE(SL' *' Ei *' II *r Qi *' Ri *rSS *ES *r Is *)

Endemic equilibrium
This occurs when the infection remains present in the
population, represented b

Y Pues(Si ES L QF L RE S, EF IS). Thus,

¢ = kqk36; B,

b wikiks — apd; + kiksp

_ 39;0; I
pik ks — arp; + kiksp” !

_ kya,¢;6; 0"
ky(uikiks — a,pp; + kiksdp)' =

_ a,$;0; R,
tikiks — arp; + kiksp” !

_ (a1vks + azk,7);6;
ik, (uik ks — ayp; + kiks )’

__5 E* = i 1 *
ts+ 5" 7% kaus + )"

— ¢sa395
k4k5 (.u-s + ¢s) .

Qs

Where,

ki=ay+ay+p, ky=pu;+6+, ks=¢+

T+5i+ui1k4 = Us t as, kS =Aus+5Sl
Bals+Bal{

Bsl”
$i=" s =

98

Basic reproduction number
Let the infected state variables be ordered as
X = (Ei' Ii' Qi' ES' IS)T-
The Mpox-free equilibrium (MFE) of system
(Eq. 1) is
Py = (57, B 1 Q7 R;, S, S I5)

gi 95
= (—, 0,0,0,0,—, 0,0).
Ui s

Following the next-generation matrix (NGM)
approach of van den Driessche and Watmough
(17), we decompose the infected subsystem in
the form

dx_F v
= F@ -V,

where F;(x) denotes the rate of appearance of
new infections in compartment i, and V;(x) col-
lects all other transitions (progression, recovery,
isolation, natural and disease-induced mortal-
ity). The Jacobian matrices of F and V evaluated
at the MFE are denoted by F and V, and the
basic reproduction number is
Ry = p(FV™h),

the spectral radius of the next-generation matrix.
New infection matrix F. New infections occur
only in the exposed human class E; (from I; and
I ) and in the exposed small-mammal class E

(from I ). Linearising at the MFE (so thatz—;, =
1and > = 1) yields

/0 B, 0 0 ﬁl\

00 00 0

F=|lo 0o 0 0 o |
0000/33/
0 0 00 0

Transition matrix V. Let

k1:a1+a2 +‘U.L',

kZ = U + 6i + Y,

k3=¢)+T+5i+Hi,

ky=pus + as,

k5 : l’l'S + 65. ) ) )
Then the Jacobian of the non-infection transi-
tions is
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kk, 0 0 0 O
/ —a; k; 0 0 0\
V=|-a, 0 k3 0 .
0O 0 0 k, O /

0 0 0 —az ks
Because V is block-lower-triangular, its inverse
is obtained blockwise. Only the columns corre-
sponding to infectious classes I; and I, are

needed:
T

(oL 1
V-le, =(0,—,0,00) ,V-le
k>

_ (0,0,0,0,1)T

= e ,
here e, and es is the unit vectors in R>. Next-
generation matrix. Multiplying gives

B2 p1
K
lo o 0o o o |

K=FV'=|0o 0 0 0 0|.
0

0 0 0 &
by
0 0 0 0 O
To obtain the expected number of infectious in-
dividuals generated by one infectious individual,
we incorporate the progression probabilities: a
newly infected human progresses E; — I; with
probability a, /k,, and a newly infected small
mammal progresses E, — I; with probability
as/k,. Thus the reduced NGM on the infectious
subspace ( I;, s ) is

a1 0-’1,31\
kiky  kik;
Kog=
red | 0 agﬁg
\° k)
Since K4 is upper triangular, its eigenvalues
are the diagonal entries. Therefore,

R = max {051,32 a3ﬁ3}
0 kiky ' kykes
or, in full parameters,
R,
_ max{ a1, aszfs }
(ay + az + p)(py + 6 + )" (4 + az)(ug + 65)

Stability of disease-free equilibrium
To establish global stability conditions for equi-
libria E, in dynamical systems, the framework
proposed by Castillo-Chavez and Song (22) can
be effectively utilized. This framework empha-
sizes the importance of identifying basins of at-
traction, which states that if the model system
can be written in the following form:

40 F(U,Z

dat ©,2)
£ =6(U,2) and G(U,0) =0,
here U € R™ are the uninfected individuals and
Z € R™ describes the infected individuals. Ac-
cording to this notation, the disease-free equilib-
rium is given by Qo = (U,0). Now, the follow-
ing two conditions guarantee the global stability
of the disease-free equilibrium.

G1: For % = F(U,0),0, is globally asymptot-

ically stable.
G2 : G(U,2)=BZ—-G"(U,2) where
¢ (0,Z)=0 for U,Z€

here B = D,G(U,,0) is a M-matrix and Q is the
feasibility of the model. The following theorem
then defines the global stability of E,,.

Lemma 1: The equilibrium point Q, = (U, 0)
exhibits global asymptotic stability under the
condition that R, < 1 and when the assumptions
G, and G, are satisfied.

Following this, the next theorem establishes the
global stability of the disease-free equilibrium
E, within the context of our proposed model sys-
tem.

Theorem 2: The disease-free equilibrium point
E, is considered globally asymptotically stable
provided that Ry, < 1.

Stability of endemic equilibrium

The Routh-Hurwitz criterion is a powerful tool
for analyzing the local stability of endemic equi-
libria in epidemic models. To establish local as-
ymptotic stability, one must derive conditions
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based on the characteristic polynomial of the The Jacobian matrix about the endemic equilib-
system's linearized equations around the en- ria ¢y g 1S given as :
demic equilibrium.

c11 0 c3 ¢y O 0 0 18]
€21 C22 C23 O 0 0 0 28
0 ¢33, ¢33 0 0 0 0 0
10 caz 0 gy O 0 0 0
J=10 0 ¢ coq css 0 0 O
0 0 0 0 0 ce6 0 cgg
0 0 0 0 0 ¢y €77 Cog
[ 0 0 0 0 0 0 «cg7; cCgg
here
c :_(3115"'.821}1)_ . :_ﬁz_ —¢.c __@C :ﬁ1ls+ﬁzlh Cry = —(as + ay + 1)
11 —Ni Uis C13 N, C14 = 18 N, C2t —Ni » €22 1 2 T Ui
C32 =@y, €33 = —(Ui + 8+ A),cap =z, a0 = —(@+ T+ 8 + ), 53 =A,C54 =T, €55 = — 14
Ce6 = — (Ms + ﬁ;_:s)' Ceg = —ﬁ;_fs'cm = ﬁ;—:s' c77 = —(us + @3),c75 = ﬁ;_fs' cg7 = @z and cgg = — (s + &).

The characteristic equation of J is given as:
NN, [(—x — ) (—=pay(Usfy + ) (x +y + &+ ) + (—x — 17— ¢ — & — )

(Siarfo(x + ;) — (x + ag + ay + ) (Spazfz(x + ps) — (x + as + pg)
(IsﬁB + Ng(x + .us))(x + (us + 65)))] =0

Which can be further written as: conclude this section with the following theo-
x8 + C1x7 + Cpx® + C3x5 + Cyx* + Csx® + CoxrentC,x + C5 = 0
Theorem 3: The endemic equilibrium point

where C; 's for i = 1,2, ...,8 are the coefficients ¢uee exhibits local asymptotic stability when
of x8~¢, after expressing the polynomial in its Ry, > 1 and the following conditions are ful-
standard form. filled:

Note: To derive the condition for the stability of 1. C; >0

duee, we will perform the following substitu- 2. C,:C, > C3

tions: 3.C,C,C3 + CyC1Cs > CoC% + C2C,

p= C1C2 CoCs ,Q = C1C4C_COC5 ’ R = 4, . P*Q > P*Q MQ* > P*N, M*N >
CchC C7 , S =Cq , ' p* = PC3;C1Q, Q* = MN®,  XN*>TM".

PCs— cl:lR R* = PG=GiS 40 P*Q-PQ* N = Nu_mericgl Metho_ds _ _ _

P ; P’ pr This section provides an in-depth discussion of
P*R_*PR*, T = P*f , M* = w, N* = the two numerical methods employed to solve
MRf_p*T d M*N_,%,* the system of ordinary differential (Eg.1) de-

M : X=—4 ' scribing the Mpox transmission model: the 4th-

By implementing these substitutions, we can

100



Movaheedi & Rahmani. Afghanistan Journal of Infectious Diseases. 2026; 4(1):94-113

order Runge-Kutta method and the Backward
Euler method.

Runge-Kutta Method

The 4th-order Runge-Kutta method (RK4) is a
prominent numerical technique for solving ordi-
nary differential equations (ODEs), known for
its balance of simplicity, accuracy, and compu-
tational efficiency. RK4 computes four interme-
diate slopes at each time step, which are then av-
eraged to yield a more precise solution compared
to simpler methods, such as Euler's. This method
is particularly effective for non-stiff equations,
as evidenced by various studies demonstrating

its stability and convergence properties. This
section details the application of the RK4 for
solving the system of (Eg. 1), as we can see in
Table 2. For each differential equation, we com-
pute the solution at the next time step using the
following RK4 formula:
Yns1 = Yn + 1/6(ky + 2k; + 2k3 + ky),
where:

ky = h* f(tn, yn)

ko =hxf(ty+h/2,yn +k1/2)

ks =hx*f(tn+h/2,yn + k2/2)
ky=h=x*f(t, +h y, +k3).

Table 2: Applying the RK4 to the system of (Eq.1)

Variable Differential Equation Function Definition
Si dSl Si i
I 0; — (B11s + Bzh)ﬁi — W;S; fs=0; —Bils + leiﬁi - WS;
+ @0Q; + Q;
Ei dEl Si Si
PTi (B11s + lei)ﬁi fe =Bils + leiﬁi
4 — (g + ap + W)E; — (ag + oy + W)E;
I; ; = o E; — (W + 8; + A);
: =y G+ 8+ D) fi = By = Qg+ 8+ L
do; = 0,E; — (@ + T+ 8; +1,)0;
@ d—tl=ain—(<P+T+51+lli)Qi fo = ki = (o e
R; dR; = 1Q; + Al; — R,
i d_tL:TQi‘FAIi_IJ-iRi fR i 14 Hift
S as S.I S.I
y d_::es_BS;I_:_P-sSS fSS =0s—B3 ;,SS_HSSS
E dE S.I S.I
’ e = Bsy (s + o)k oy = Bs 7y = (s + aa)Es
dl = o:zE; — 6.)1
IS d_; = 0(3ES - (Fls + 85)15 fIS *3Bs (us * S) s

After applying the all four stages of RK4 we
have that:
SM =S+ 1/6(k3 + 2k5 + 2k5 + k3)
EMY = EM + 1/6(kE + 2kE + 2KkE + KE
M =1+ 1/6(ki + 2k + 2kL + kL)
M= QP+ 1/6(k? + 2kF + 2kS + k)
R = R} + 1/6(kT + 2k + 2k§ + k£)
S = S+ 1/6(k5S + 2k + 2k3° + k°)

EPY = EP + 1/6(k;® + 2k5° + 2k5° + k,°)
I =10+ 1/6(k + 2ky + 2k5 + k).

Figure 2 illustrates the time evolution of various
human population compartments using the RK4
Method. The compartments include susceptible
S;in (a), exposed E;, infected I;, isolated Q;,
and recovered R; populations in ( b). The simu-
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lation highlights how the human population dy-
namics respond to factors such as disease trans-
mission, recovery, and death rates over time.
Figure 3 represents the time evolution of the
small mammal population compartments using

Population

the RK4 Method. (a) displays changes in the sus-
ceptible Sg and (b) showing the changes in the
exposed E;, and infected I; populations. The
graph demonstrates how disease transmission
and recovery processes affect the small mammal
population over time.

Susceptible Humans (Si)

o 10 20
Time (years)

30 40 S0

E)_tpose_q: Infected, Quarantined & Recovered Humans

100
Exposed (E)) |
80 Infected ) ]
80 Quarantined (Q )
Recovered (R.)
70
" A
= 60 \
(=]
= T ———
= 50 / e 1
=3 , 1
& 40 :
30
20 ¢ 1
o .
0 10 20 30 40 50
Time (years)

@)

Figure 2: Human population dynamics: (a) Dynamics of susceptible humans ( S; ); (b) .Trends of exposed, infected, quar-
antined, and recovered humans t = 0.52,a, = 2.0,a; = 0.2, 8, = 0.000063, 3, = 0.0025,6; = 1,160,000: Parameters
y; = 0.008,5; = 0.2
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Susceptible Small Mammals (Ss)

Population

(@)

120

100

80

60

Population

40

o

30 40 50

Time (years)

Exposed & Infected Small Mammals

[ AExpOSBd(E_)IW\

| — Infected (IB]

(b)

30 40 50

Time (years)

Figure 3: Small mammal population dynamics: (a) Dynamics of susceptible small mammals (S;); (b) Trends of
exposed and infected small mammals - ug = 0.002,8; = 0.5, a3 = 3.0, 83 = 0.0027, 6, = 200,000: Parameters

Backward Euler Method

The Backward Euler method is a powerful im-
plicit technique for solving ordinary differential
equations (ODEs), particularly effective for stiff
problems. Its stability stems from the require-
ment to solve for the future state at each step,
which allows it to handle rapid changes in solu-
tion components.

General Form of the Backward Euler Method
For a differential equation of the form:

dy
E—f(t»Y),

the Backward Euler method updates the solution
as:

Yn+1 =Yn T hf(tn+1' Yn+1)u

here, h is the step size, and y,,,1 is the unknown
state at the next time step, which must be solved
for.

Applying the Backward Euler Method

We apply the Backward Euler method to each of
the equations in system (Eq.1), as we see in Ta-
ble 3, resulting in implicit equations that must be
solved at each time step.
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Table 3: Applying the backward Euler method equation to the system of equation (Eq.1)

Vari- | Differential Equation Backward Euler Method Equation Solve for
able
s, |ds; S; B L S spl
E: Gi_(ﬁlls-l_ﬁzli)ﬁi Sln =Sin+h Gi_(.Bll;H—l-{_.BZ[in )T
L
= W1;S;
+¢Q; — S+ ¢Q?+1>
E: dE; S Sn+1 E_n+1
i dtl = (,8115 +lei)ﬁli El?'l+1 — ELn + h((ﬂ1];l+1 +ﬁ21in+1)LT i
— (a1 + ay '
+mE; — (g + ap + ) EM*
I; dl; MY =10+ he (aEMY — (g + 8; + A m+t
i d_tlzalEi_(ﬂi+8i i i (11 (:ul i )l ) i
+ A)I;
Q; &:ain_((p-l_T-l'Si in+1:Qin"‘h(a-'inn-F1 in+1
dt 100 = (@ +7+8+ Q")
i)li
R; dR; _ 0+ Al — 1R, RM1 = R + h(zQI"! + AIMY — RTY) RM1
dt
S dsS S.I snt+in+i sn+1
Tl g =0 By msSs S§l+1=3;1+h<95—[33—5 - —uss;l“) .
S
E dE S¢l snt+ln+l gn+l
T @ TR, W BT=E +h<ﬁg—s v s +a3)E;l+1) :
S
+ (Z3)ES
1 dl ITL+1 =n + h((X En+1 _ (u + 8 )In+1). In+1
s d_ts = azE; — (us + 65)s y y 3 ° o *

The numerical behavior of the human population
compartments is investigated using the Back-
ward Euler method. Simulations are carried out
with the parameter values 6; = 1160000, 5; =
0.0025,8, = 0.000063,a; = 0.2,a, =
2.0,¢ = 2.0, = 0.52,A = 0.83\my; =
0.008,and 6; = 0.2. The initial population
sizesare chosenas S;(0) = 1000000, E;(0) =
100,7;(0) = 50,Q;(0) = 20,and R;(0) =
0. Figure 4(a) and 4(b) display the resulting
temporal evolution of the human compartments.
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The compartmental dynamics of the small mam-
mal population are examined using the Back-
ward Euler numerical method. Simulations are
performed with the parameter values 6, =
200000, 85 = 0.0027, a3 = 3.0,us =
0.002, and 85 = 0.5. The initial population
sizes are selected as S:(0) =
200000, E;(0) = 100, and I;(0) = 50. Fig-
ure 5(a) and 5(b) illustrate the resulting temporal
evolution of the susceptible, exposed, and in-
fected small mammal compartments.
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Figure 4: Human population dynamics obtained using the Backward Euler method: (a) susceptible humans; (b)
exposed, infected, quarantined, and recovered humans
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Figure 5: Small mammal population dynamics obtained using the Backward Euler method: (a) susceptible
small mammals; (b) exposed and infected small mammals

Comparison Criteria comparable numerical solutions, key distinc-
The 4th-order Runge-Kutta (RK4) and Back- tions emerged upon analyzing computational ef-
ward Euler methods were evaluated for solving ficiency, stability, error, and complexity (Table
the Mpox transmission model. While both meth- 4).

ods produced visually similar graphs, indicating
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Table 4: Comparison Criteria for both numerical method (RK4 and Backward Euler) used to solve the Eq. (1)

Comparison Cri-
teria

4th-order Runge-Kutta (RK4) (Reference)

Backward Euler

Accuracy  and
Convergence

Computational
Efficiency

Stability

Error Analysis

Complexity  of
Implementation

- Higher accuracy in non-stiff cases due to
four-stage process, closely approximating ex-
act solutions (20).

- Suitable for a wide range of applications due
to good convergence characteristics (21).

- Requires fewer computational resources for
non-stiff equations due to its explicit nature.
- Executes faster at smaller step sizes without
the need for iterative solutions (21, 22).

- Conditionally stable, necessitating smaller
step sizes for accuracy in stiff equations, limit-
ing use in such scenarios.

- Shows smaller errors at moderate step sizes
in non-stiff equations, yielding accurate re-
sults.

- Straightforward to implement, beneficial for
rapid testing and multiple simulations.

- High accuracy, particularly suited
for stiff equations, where stability
demands higher-order accuracy (23,
24).

- Incurs higher computational cost
due to the implicit nature, requiring
solutions of algebraic equations at
each step.
- Advances in backward integration
have reduced overhead, making it
feasible for stiff ODEs (25, 26).

- A-stable, allowing for larger step
sizes without sacrificing stability,
thus suited for stiff models (23, 24).
- Maintains comparable accuracy in
stiff conditions, but may require
higher computational costs.

- Requires iterative methods at each
time step, adding coding complexity

and potential debugging challenges,
especially in larger systems (27, 28).

Despite RK4's benefits for non-stiff cases, its
conditional stability limits its effectiveness for
stiff problems. Conversely, the Backward Euler
method, with its inherent A-stability, is well-
suited for stiff equations, although at a poten-
tially higher computational expense due to its
implicit nature. This underscores the importance
of selecting appropriate numerical methods
based on the characteristics of the ODE being
solved.

Implementation
Model Setup
The Mpox transmission model was set up in
MATLAB, using compartmental deterministic
modeling to represent disease dynamics across
human and small mammal populations. The
% k1 for Susceptible humans

K1 Si=h>*fSi(S_i(i), Ls@), i),
Q_i(i));

% Similar computations for other compart-
ments

S_i(i+1) =S_i(i) + (1/6) * (k1_S_i+2*k2_S i
+2*k3_S i+k4_S i);

model structure includes different compartments
for humans (Susceptible, Exposed, Infected, Iso-
lated, Recovered) and small mammals (Suscep-
tible, Exposed, Infected). MATLAB is particu-
larly suitable for this application because it sup-
ports matrix operations and integration, making
it ideal for solving systems of ordinary differen-
tial equations (ODEs) used in epidemiological
modeling.

Algorithm Implementation

The model utilizes two numerical algorithms for
solving the system of ODEs: the 4th-order
Runge-Kutta (RK4) method and the Backward
Euler method.

Runge-Kutta 4th Order Method (RK4)

1. Initialization: Define the initial values for

each compartment and the model parameters.

2. lteration: For each time step:
- Compute intermediate values (k4, k, ks, and

ky ) for each compartment.
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- Update each compartment's value by averag-
ing these intermediate values.
3. Code: Sample snippet:

Backward Euler Method

1. Initialization: Define initial values and param-
eters as with RKA4.
2. Implicit Calculation: For each time step, solve

options = optimset('Display’,  'off");
x_0 = [S_i(i); E_i(i); 1_i(i); Q_i(i); R_i(i);

S_s(i); E_s(i); 1_s()];
sol = fsolve(@(x) backwardEulerSystem(x,

S_i(i), E_i(i), ... ), X0, options);

implicit equations using fsolve for each com-

partment.

3. Code: Sample snippet:

Results

Accuracy Comparison
The accuracy of both the 4th-order Runge-Kutta
(RK4) and Backward Euler methods was evalu-
ated using error norms. Due to RK4’s four-stage
intermediate steps, it generally showed higher
accuracy in non-stiff cases. This method closely
approximated the expected results for each com-
partment, as observed in error plots for the sus-
ceptible, exposed, infected, isolated, and recov-
ered populations of both humans and small
mammals.
Plotting solutions from both methods over iden-
tical time intervals highlighted the RK4
method's precision, especially in rapid transi-
tions (e.g., initial infection surge in the suscepti-
ble population). Error norms confirmed that the
RK4 method achieved lower cumulative error
compared to the Backward Euler method in non-
stiff scenarios.
Stability
Stability was examined by running each method
across varying time step sizes. While the RK4
method maintained stability at smaller time
steps, it exhibited instability with larger time
steps in stiff regions, such as during sudden in-
fection spikes. Conversely, the Backward Euler
108

method demonstrated greater stability across all
time steps, especially in stiff scenarios, main-
taining solution integrity even with larger time
steps.

Computational Efficiency

Comparing the CPU time, memory usage, and
number of iterations revealed that RK4 required
more iterations at smaller time steps due to its
conditional stability in stiff regions. The Back-
ward Euler method, being implicit, required
fewer iterations, particularly in stiff scenarios,
but incurred higher memory and CPU costs due
to iterative solutions at each step. Generally, for
non-stiff cases, RK4 achieved faster execution
with lower memory demands.

Real Data Forecasting

To evaluate the practical applicability of the pro-
posed human-animal Mpox transmission model
and to assess the performance of the numerical
schemes under real-world conditions, officially
reported surveillance data were obtained from
the Centers for Disease Control and Prevention
(CDC) (29), United States. The dataset consists
of daily confirmed U.S. Clade Il Mpox cases re-
ported to the CDC from May 2022 up to Decem-
ber 10, 2025. According to the CDC definition,
the reporting date corresponds to the earliest
available information regarding illness onset, di-
agnosis date, laboratory confirmation, or entry
into the CDC reporting system. Therefore, the
CDC data represent reported cases rather than
the true underlying infection incidence.

In the proposed eight-dimensional compart-
mental model described in Section 2, disease
transmission dynamics are governed by epide-
miological states that are not directly observable
in surveillance data. To establish a consistent
comparison between the model output and the
CDC-reported cases, an observation process was
introduced. Specifically, daily reported Mpox
cases were assumed to correspond to a fraction
of infectious individuals who are detected and
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reported after a short diagnosis delay. Accord-
ingly, the reported incidence was defined as
Reported(t) = py I;(t — 1)

where p denotes the reporting rate, y is the tran-
sition rate from the infectious compartment, and
T represents the average reporting delay. This
formulation provides a direct and epidemiologi-
cally meaningful link between the CDC case
definition and the structure of the proposed
model (30).

To reduce reporting noise and weekly fluctua-
tions inherent in daily surveillance data, the of-
ficial 7-day moving average of reported cases
was used for calibration and comparison. Model
parameters were estimated by minimizing the

mean squared error between the CDC-reported
daily cases and the model-predicted reported in-
cidence. After calibration, the full eight-dimen-
sional system was solved numerically using both
the (RK4) method and the Backward Euler
method.

Figure 6 compares the CDC-reported daily
Mpox cases with the model-predicted reported
incidence obtained using the RK4 and Backward
Euler methods. Both numerical schemes suc-
cessfully reproduce the overall temporal trend of
the reported data. The RK4 method captures
short-term variations more accurately, whereas
the Backward Euler method produces smoother
trajectories, reflecting its enhanced numerical
stability.
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9000
8000
7000
6000 1

i
s000

Daily cases

4000 [ t
3000 +
2000

1000 13

CDC (7-day MA)
- == RK4
------ Backward Euler |

0 200 400
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800 1000 1200

Time (days)

Figure 6: CDC-reported daily Mpox cases and model predictions (RK4 and BE).

Figure 7 presents the cumulative number of
Mpox cases, comparing the CDC-reported cu-
mulative cases with cumulative values predicted
by the proposed model. The close agreement be-
tween the simulated and reported cumulative

trends demonstrates that the calibrated model re-
liably captures the overall progression of the out-
break.
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Figure 7: Cumulative CDC-reported Mpox cases and cumulative model predictions.

A 30-day forecast beyond the last available data
point is shown in Figure 8. Assuming constant
model parameters and unchanged intervention
measures, the proposed model predicts a gradual
evolution of daily reported Mpox cases. Con-
sistent with the previous comparisons, the RK4

-45
42 10

r

Daily cases

o,

0.5

method exhibits higher sensitivity to short-term
dynamics, while the Backward Euler method
yields more stable and conservative long-term
projections.

- - RK4
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0L
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20 25 30 35
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Figure 8: Thirty days forecast of daily reported Mpox cases using the proposed model
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Overall, these results confirm that the real-data
calibration and forecasting are fully consistent
with the proposed eight-dimensional human—an-
imal Mpox transmission model and provide a
meaningful evaluation of the numerical schemes
under realistic epidemiological reporting condi-
tions.

Discussion

The numerical performance of the RK4 and
Backward Euler methods observed in this study
is consistent with existing findings in the litera-
ture on numerical methods for epidemiological
modeling. Explicit Runge—Kutta schemes are
widely reported to provide high accuracy and
computational efficiency when applied to non-
stiff systems with smoothly varying dynamics
(6,7,19,20). The superior accuracy and lower
computational cost of RK4 in the non-stiff
phases of the proposed Mpox transmission
model are therefore in agreement with these ear-
lier studies and confirm its suitability for short-
term epidemic simulations.

The stronger stability of the Backward Euler
method identified in this study also aligns with
previous research emphasizing the effectiveness
of implicit methods for stiff initial value prob-
lems. Numerous studies have shown that im-
plicit schemes, including Backward Euler and
backward differentiation formulae, remain sta-
ble under rapid dynamic changes where explicit
methods may fail or require very small step sizes
(22-26,30). The present results extend these
conclusions to a coupled human-animal Mpox
transmission model, demonstrating that Back-
ward Euler remains reliable during stiff epi-
demic phases such as sudden infection surges or
strong isolation effects.

In comparison with existing Mpox modeling
studies that primarily focus on transmission dy-
namics and control strategies without explicitly
assessing numerical  solver  performance
(12,13,30), the present work provides a clear

methodological contribution. By directly com-
paring explicit and implicit numerical methods
under identical model structures and parameter
settings, this study highlights how solver accu-
racy, stability, and efficiency depend on epi-
demic phase and system stiffness. This solver-
oriented perspective complements earlier Mpox
modeling efforts and adds methodological clar-
ity to the literature.

The real-data calibration using CDC-reported
Mpox cases further supports the practical rele-
vance of these findings. Recent data-driven stud-
ies emphasize the importance of capturing short-
term fluctuations and behavioral effects in Mpox
surveillance data (29). Consistent with these ob-
servations, the present results show that RK4 is
more responsive to short-term variations in re-
ported cases, while the Backward Euler method
produces smoother trajectories that are more
suitable for long-term projections. Similar nu-
merical behavior has been reported in studies of
other infectious disease models, including tuber-
culosis and typhoid fever, solved using Runge—
Kutta and implicit numerical approaches
(11,27).

Overall, the strong agreement between the pre-
sent findings and the existing numerical and ep-
idemiological literature reinforces the validity of
the proposed modeling framework. By situating
the efficiency—stability trade-off of RK4 and
Backward Euler within a two-population Mpox
transmission context, this study advances cur-
rent understanding of numerical method selec-
tion in infectious disease modeling. These re-
sults underline that solver choice should be
guided by system stiffness, forecasting horizon,
and computational constraints, thereby support-
ing more reliable computational frameworks for
Mpox forecasting and broader infectious disease
modeling applications.

Conclusion
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This study shows that both the 4th-order Runge-
Kutta (RK4) and Backward Euler methods offer
reliable solutions for modeling Mpox transmis-
sion, with each method excelling under different
conditions. The RK4 method is recommended
for non-stiff epidemiological models due to its
accuracy and computational efficiency, making
it suitable when rapid transitions are minimal. In
contrast, the Backward Euler method, with its in-
herent stability, is ideal for models with stiff
characteristics, albeit with a higher computa-
tional cost.

Future research should consider adaptive time-
stepping strategies that dynamically adjust to
stiff and non-stiff phases, enhancing the perfor-
mance of both methods. Additionally, incorpo-
rating variable parameters over time could im-
prove the realism of the model, making it more
adaptable to actual disease dynamics and poten-
tially increasing the predictive accuracy of epi-
demiological modeling.

Data Availability

All data used in this study are publicly available
from the Centers for Disease Control and Pre-
vention (CDC) Mpox Data and Research data-
base (29) and the Macrotrends global death rate
database (16).
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