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Background: Monkeypox (Mpox) is a re-emerging zoonotic viral disease that poses an 

increasing threat to global public health. Mathematical modeling is a key tool for under-

standing transmission dynamics of diseases like Mpox and supporting effective control 

strategies. Reliable numerical methods are essential for solving the nonlinear differential 

equations arising from such models. 

Materials: We developed a deterministic compartmental model to describe Mpox trans-

mission between human and small mammal populations. Human compartments include 

susceptible, exposed, infected, isolated, and recovered individuals, with corresponding 

classes for small mammals. We solved the system of nonlinear ordinary differential 

equations using the fourth-order Runge–Kutta (RK4) method and the Backward Euler 

method. We validated the model using real outbreak data from the U.S. Clade II Mpox 

cases reported by the Centers for Disease Control and Prevention (CDC, 2025). 

Results: Simulation results demonstrate that RK4 provides higher accuracy and faster 

convergence in non-stiff scenarios, making it suitable for short-term epidemic predic-

tions. The Backward Euler method exhibits superior numerical stability for stiff systems, 

allowing reliable long-term simulations with larger time steps. Error and computational 

analyses confirm RK4’s efficiency, while Backward Euler ensures robustness in unsta-

ble dynamic regions. Data fitting verifies that RK4 produces closer short-term approxi-

mations, whereas Backward Euler yields smoother long-term trends. 

Conclusion: Both numerical methods are effective for modeling Mpox transmission. 

RK4 is recommended for accurate short-term analysis, while Backward Euler is prefer-

able for stiff epidemic dynamics requiring high stability. These results highlight the im-

portance of appropriate numerical method selection in computational epidemiology. 
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Introduction 
 

Monkeypox (Mpox) has re-emerged in recent 

years as a significant global public health threat, 

marked by recurrent outbreaks across multiple 

continents. As a zoonotic orthopoxvirus with 

transmission routes involving both human–hu-

man and animal–human interactions, Mpox ex-

hibits complex epidemiological characteristics 

that necessitate rigorous mathematical investiga-

tion. Understanding its transmission dynamics is 

crucial not only for predicting epidemic trajecto-

ries but also for designing timely and effective 

intervention strategies such as vaccination, iso-

lation, and mobility restrictions (1–3). Compart-

mental models—including SIR, SEIR, and their 

extended structures—remain indispensable ana-

lytical tools in such studies and have been suc-

cessfully applied to Mpox and related infectious 

diseases (4–7). 

The growing diversity of modeling approaches 

in the recent literature highlights the need for 

flexible mathematical frameworks that can cap-

ture key biological, environmental, and behav-

ioral features of emerging pathogens. For in-

stance, fractional-order models have been uti-

lized to examine Mpox transmission under vac-

cination interventions (8), while delay differen-

tial equation frameworks have been applied to 

assess vaccination-driven cholera dynamics (9). 

Similarly, fractional epidemic models have pro-

vided new insights into the transmission behav-

ior of the Marburg virus, demonstrating the 

broader usefulness of non-standard dynamical 

tools for studying emerging zoonoses (10). 

These studies collectively emphasize that accu-

rate modelling depends not only on well-struc-

tured epidemiological assumptions but also on 

the efficient and reliable numerical solution of 

the underlying system of nonlinear differential 

equations. 

Because analytical solutions to such systems are 

rarely available, numerical methods play a foun-
dational role in computational epidemiology. 

The selection of an appropriate solver directly 

influences the accuracy, stability, and computa-

tional cost of simulations. Explicit methods such 

as the classical 4th-order Runge–Kutta (RK4) 

scheme are widely used for their simplicity, high 

accuracy, and effectiveness in non-stiff epi-

demic systems (6,11). However, epidemic mod-

els often exhibit stiff behavior—particularly dur-

ing rapid changes in incidence, strong isolation 

effects, or high-frequency transmission events—

where explicit schemes may fail or require pro-

hibitively small step sizes. In such settings, im-

plicit solvers like the Backward Euler method 

offer superior stability and robustness, making 

them more suitable for long-term projections 

and stiff epidemic phases (12, 13). 

Despite the extensive use of these numerical 

schemes in epidemiological modeling, direct 

comparative analyses that evaluate their perfor-

mance on Mpox transmission models remain 

limited. Therefore, there is a clear need to sys-

tematically assess how explicit and implicit nu-

merical solvers behave when applied to complex 

epidemic systems with interacting human and 

animal hosts. 

Motivated by this gap, the present study pro-

vides a detailed comparative analysis of the RK4 

and Backward Euler methods in the context of a 

two-population Mpox transmission mode. By 

examining accuracy, stability properties, con-

vergence behavior, and computational effi-

ciency, we aimed to identify the most suitable 

numerical approach for different epidemic sce-

narios. Such an analysis not only improves 

methodological understanding but also aims to 

support the development of more reliable com-

putational frameworks for future Mpox forecasts 

and broader infectious disease modeling appli-

cations, thereby enhancing the robustness and 

credibility of numerical epidemic simulations. 
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Methods 
 

Mathematical Modeling of Mpox Transmission 

We introduce a deterministic compartmental 

model to illustrate the transmission dynamics of 

Mpox, focusing on two primary populations: hu-

mans and small mammals. The human popula-

tion is divided into five compartments: suscepti-

ble individuals 𝑆𝑖(𝑡), exposed individuals 𝐸𝑖(𝑡), 

infected individuals 𝐼𝑖(𝑡) , isolated individuals 

𝑄𝑖(𝑡) , and recovered individuals 𝑅𝑖(𝑡) . The 

small mammal population consists of three com-

partments: susceptible small mammals 𝑆𝑠(𝑡) , 

exposed small mammals 𝐸𝑠(𝑡) , and infected 

small mammals 𝐼𝑠(𝑡). Individuals enter the hu-

man population at a recruitment rate of 𝜃𝑖, while 

small mammals are recruited at a rate of 𝜃𝑠 . 
Transmission from infected small mammals to 

humans occurs at a force of infection represented 

by 𝛽1, and human-to-human transmission occurs 

at rate 𝛽2. Likewise, transmission among small 

mammals is governed by 𝛽3, which denotes the 
force of infection from infected small mammals 

to susceptible ones. Exposed humans progress to 

the infected class at rate 𝛼1, and some exposed 

individuals transition to the isolated class at rate 

𝛼2. Exposed small mammals transition to the in-

fected small mammal class at rate 𝛼3. A fraction 
of isolated humans who are not infected return 

to the susceptible class at rate 𝜙. Confirmed iso-

lated cases further progress to the infected class 

at rate 𝜏, and infected humans recover at rate 𝛥. 
Natural mortality affects humans and small 

mammals at rates 𝜇𝑖  and 𝜇𝑠 , respectively. Dis-

ease-induced death occurs at rate 𝛿𝑖 for infected 

humans and 𝛿𝑠 for infected small mammals. The 
transitions between these compartments are il-

lustrated in Figure 1. 

 

 
 

Figure 1: Schematic overview of the model structure 

 

The following set of nonlinear differential equa-

tions describes the model’s dynamics. Table 1 

provides the values, sources, and descriptions of 

all parameters used in (Eq. 1). 
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𝑑𝑆𝑖

𝑑𝑡
= 𝜃𝑖 − (𝛽1𝐼𝑠 + 𝛽2𝐼𝑖)

𝑆𝑖

𝑁𝑖
− 𝜇𝑖𝑆𝑖 + 𝜙𝑄𝑖 

𝑑𝐸𝑖

𝑑𝑡
= (𝛽1𝐼𝑠 + 𝛽2𝐼𝑖)

𝑆𝑖

𝑁𝑖
− (𝛼1 + 𝛼2 + 𝜇𝑖)𝐸𝑖 

𝑑𝐼𝑖
𝑑𝑡

= 𝛼1𝐸𝑖 − (𝜇𝑖 + 𝛿𝑖 + ∆)𝐼𝑖 

𝑑𝑄𝑖

𝑑𝑡
= 𝛼2𝐸𝑖 − (𝜙 + 𝜏 + 𝛿𝑖 + 𝜇𝑖)𝑄𝑖            (Eq. 1) 

𝑑𝑅𝑖

𝑑𝑡
= 𝜏𝑄𝑖 + ∆𝐼𝑖 − 𝜇𝑖𝑅𝑖 

𝑑𝑆𝑠

𝑑𝑡
= 𝜃𝑠 − 𝛽3𝑆𝑠𝐼𝑠

1

𝑁𝑠
− 𝜇𝑠𝑆𝑠                      

𝑑𝐸𝑠

𝑑𝑡
= 𝛽3𝑆𝑠𝐼𝑠

1

𝑁𝑠
− (𝜇𝑠 + 𝛼3)𝐸𝑠  

𝑑𝐼𝑠

𝑑𝑡
= 𝛼3𝐸𝑠 − (𝜇𝑠 + 𝛿𝑠)𝐼𝑠. 

 
Table 1: Parameters values used in the Simulations. 

 

Param-

eter 

Description Value Unit Reference 

𝜃𝑖 Rate of recruitment into the human population 1,160,000 Year  −1 Estimated 

𝜃𝑠 Recruitment rate for the small mammal popu-

lation 

200000 Year  −1 Estimated 

𝛽1 Force of infection from Small mammals to 

Human 

0.0025 Year  −1 (14) 

𝛽2 Force of infection from Human to Human 0.000063 Year  −1 (14) 

𝛽3 Force of infection from Small mammals to 

Small mammals 

0.0027 Year  −1 (14) 

𝛼1 Rate of transition from exposed human to in-

fected human 

0.2 Year  −1 (15) 

𝛼2 Transition rate from exposed to isolated cases 2.0 Year  −1 (15) 

𝛼3 Transition from exposed small mammals to 

infected small mammals 

3.0 Year  −1 Assumed 

𝜑 Fraction of those isolated that is not infected 2.0 Year  −1 (15) 

𝜏 Progression from isolated to infected class 0.52 Year  −1 (15) 

∆ Humans recovery rate 0.83 Year  −1 (16) 

𝜇𝑖 Natural death rate of human 0.008 Year  −1 (17) 

𝜇𝑠 Natural death rate of small mammals 0.002 Year  −1 (14) 

𝛿𝑠 Disease induced death rate for small mammals 0.5 Year  −1 (15) 

𝛿𝑖 Death rate due to disease for humans 0.2 Year  −1 (18) 

 

The model analysis 

On Human Population, 𝑁𝑖 = 𝑆𝑖 + 𝐸𝑖 + 𝐼𝑖 +
𝑄𝑖 + 𝑅𝑖 , the differential equation is given as: 
𝑑𝑁𝑖

𝑑𝑡
= 𝜃𝑖 − 𝛿𝑖𝐼𝑖 − 𝜇𝑖𝑁𝑖. 

Also, for the small mammal population 𝑁𝑠 =
𝑆𝑠 + 𝐸𝑠 + 𝐼𝑠 , and the associated differential 
equations are as follows: 

(𝑑𝑁𝑠)

𝑑𝑡
= 𝜃𝑠 − (𝜇𝑠 + 𝜃𝑠)𝑁𝑠. 

Theorem 1: 𝐿𝑒𝑡 (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑄𝑖, 𝑅𝑖 , 𝑆𝑠, 𝐸𝑠, ℝ) rep-
resent the solution of (Eq.1), given initial condi-

tions within a biologically feasible region ∆=
∆i × ∆𝑠  with: 



Movaheedi & Rahmani. Afghanistan Journal of Infectious Diseases. 2026; 4(1):94-113 

 

98 

 

∆𝑖= (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑄𝑖 , 𝑅𝑖) ∈ ℝ+
5 : 𝑁𝑖 ≤

𝜃𝑖

𝜇𝑖
 

and 

∆𝑠= (𝑆𝑠, 𝐸𝑠 , 𝑅𝑟) ∈ ℝ+
3 : 𝑁𝑠 ≤

𝜃𝑠

𝜇𝑠
, 

then ∆ is a non-negative invariant set. 
Following the method of Rana and Sharma (19), 

it follows that: 

0 ≤ 𝑁𝑖(𝑡) ≤ 𝑁𝑖(0)𝑙−𝜇𝑖(𝑡) +
𝜃𝑖

𝜇𝑠
(1 − 𝑙−𝜇𝑖(𝑡)) 

also 

𝑁𝑠(𝑡) ≤ 𝑁𝑠(0)𝑙−(𝜇𝑠+𝜃)𝑡 +
𝜃𝑠

𝜇𝑠
(1 − 𝑙−(𝜇𝑠+𝜃)𝑡), 

hence for 𝑡, the set ∆ is positive invariant. 

 

Mpox-Free Equilibrium State 

This state occurs when no disease is present. 

Therefore, in the absence of infection, we set 

𝐸𝑖 , 𝐼𝑖 , 𝑄𝑖, 𝑅𝑖 , 𝐸𝑠 and 𝐼𝑠 to zero in (Eq. 1), and the 
resulting solution yields the Mpox-free equilib-

rium states expressed as: 

Φ𝑀𝐹𝐸(𝑆𝑖 
∗, 𝐸𝑖  

∗, 𝐼𝐼  
∗, 𝑄𝑖 

∗, 𝑅𝑖  
∗, 𝑆𝑠 

∗𝐸𝑠 
∗, 𝐼𝑠 

∗) 
. 

Endemic equilibrium 

This occurs when the infection remains present in the 

population, represented b 

y Φ𝑀𝐸𝐸(𝑆𝑖
∗, 𝐸𝑖

∗, 𝐼𝑖
∗, 𝑄𝑖

∗, 𝑅𝑖
∗, 𝑆𝑠

∗, 𝐸𝑖
∗, 𝐼𝑠

∗). Thus,  

𝑆𝑖
∗ =

𝑘1𝑘3𝜃𝑖

𝜇𝑖𝑘1𝑘3 − 𝛼2𝜑𝜙𝑖 + 𝑘1𝑘3𝜙𝑖
,  𝐸∗

𝑖

=
𝑘3𝜙𝑖𝜃𝑖

𝜇𝑖𝑘1𝑘3 − 𝛼2𝜑𝜙𝑖 + 𝑘1𝑘3𝜙𝑖
,  𝐼∗

𝑖

=
𝑘3𝛼1𝜙𝑖𝜃𝑖

𝑘2(𝜇𝑖𝑘1𝑘3 − 𝛼2𝜑𝜙𝑖 + 𝑘1𝑘3𝜙𝑖)
, 𝑄∗

𝑖

=
𝛼2𝜙𝑖𝜃𝑖

𝜇𝑖𝑘1𝑘3 − 𝛼2𝜑𝜙𝑖 + 𝑘1𝑘3𝜙𝑖
,  𝑅∗

𝑖

=
(𝛼1𝛾𝑘3 + 𝛼2𝑘2𝜏)𝜙𝑖𝜃𝑖

𝜇𝑖𝑘2(𝜇𝑖𝑘1𝑘3 − 𝛼2𝜑𝜙𝑖 + 𝑘1𝑘3𝜙𝑖)
, 𝑄∗

𝑠

=
𝜃𝑠

𝜇𝑠 + 𝜙𝑠
,  𝐸∗

𝑠 =
𝜃𝑠

𝑘4(𝜇𝑠 + 𝜙𝑠)
, 𝐼𝑠

∗

=
𝜙𝑠𝛼3𝜃𝑠

𝑘4𝑘5(𝜇𝑠 + 𝜙𝑠)
. 

Where, 

 𝑘1 = 𝛼1 + 𝛼2 + 𝜇𝑖,  𝑘2 = 𝜇𝑖 + 𝛿𝑖 + , 𝑘3 = 𝜑 +
𝜏 + 𝛿𝑖 + 𝜇𝑖 , 𝑘4 = 𝜇𝑠 + 𝛼3,  𝑘5 = 𝜇𝑠 + 𝛿𝑠, 

 𝜙𝑖 =
𝛽1𝐼𝑠

∗+𝛽2𝐼𝑖
∗

𝑁𝑖
, 𝜙𝑠 =

𝛽3𝐼∗

𝑁𝑠
. 

 

Basic reproduction number 

Let the infected state variables be ordered as 

𝑥 = (𝐸𝑖 , 𝐼𝑖 , 𝑄𝑖 , 𝐸𝑠, 𝐼𝑠)
T. 

The Mpox-free equilibrium (MFE) of system 

(Eq. 1) is 

ΦMFE = (𝑆𝑖
∗, 𝐸𝑖

∗, 𝐼𝑖
∗, 𝑄𝑖

∗, 𝑅𝑖
∗, 𝑆𝑠

∗, 𝐸𝑠
∗, 𝐼𝑠

∗)

= (
𝜃𝑖

𝜇𝑖
, 0,0,0,0,

𝜃𝑠

𝜇𝑠
, 0,0). 

Following the next-generation matrix (NGM) 

approach of van den Driessche and Watmough 

(17), we decompose the infected subsystem in 

the form 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥) − 𝑉(𝑥), 

where 𝐹𝑖(𝑥) denotes the rate of appearance of 

new infections in compartment 𝑖, and 𝑉𝑖(𝑥) col-

lects all other transitions (progression, recovery, 

isolation, natural and disease-induced mortal-

ity). The Jacobian matrices of 𝐹 and 𝑉 evaluated 

at the MFE are denoted by 𝐹  and 𝑉 , and the 
basic reproduction number is 

𝑅0 = 𝜌(𝐹𝑉−1), 
the spectral radius of the next-generation matrix. 

New infection matrix 𝐹. New infections occur 

only in the exposed human class 𝐸𝑖 (from 𝐼𝑖 and 

𝐼𝑠 ) and in the exposed small-mammal class 𝐸𝑠 

(from 𝐼𝑠 ). Linearising at the MFE (so that 
𝑆𝑖

∗

𝑁𝑖
=

1 and 
𝑆𝑠

∗

𝑁𝑠
= 1 ) yields 

𝐹 =

(

 
 

0 𝛽2 0 0 𝛽1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 𝛽3

0 0 0 0 0 )

 
 

. 

Transition matrix 𝑉. Let 
𝑘1 = 𝛼1 + 𝛼2 + 𝜇𝑖 ,
𝑘2 = 𝜇𝑖 + 𝛿𝑖 + 𝛾,
𝑘3 = 𝜙 + 𝜏 + 𝛿𝑖 + 𝜇𝑖 ,
𝑘4 = 𝜇𝑠 + 𝛼3,
𝑘5 = 𝜇𝑠 + 𝛿𝑠.

 

Then the Jacobian of the non-infection transi-

tions is 
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𝑉 =

(

 
 

𝑘1 0 0 0 0
−𝛼1 𝑘2 0 0 0
−𝛼2 0 𝑘3 0 0
0 0 0 𝑘4 0
0 0 0 −𝛼3 𝑘5)

 
 

. 

Because 𝑉 is block-lower-triangular, its inverse 
is obtained blockwise. Only the columns corre-

sponding to infectious classes 𝐼𝑖  and 𝐼𝑠  are 

needed: 

𝑉−1𝑒2 = (0,
1

𝑘2
, 0,0,0)

T

, 𝑉−1𝑒5

= (
0,0,0,0,1

𝑘5
)
T

, 

here 𝑒2 and 𝑒5 is the unit vectors in ℝ5. Next-

generation matrix. Multiplying gives 

𝐾 = 𝐹𝑉−1 =

(

 
 
 
 

0
𝛽2

𝑘2
0 0

𝛽1

𝑘5

0 0 0 0 0
0 0 0 0 0

0 0 0 0
𝛽3

𝑘5

0 0 0 0 0 )

 
 
 
 

. 

To obtain the expected number of infectious in-

dividuals generated by one infectious individual, 

we incorporate the progression probabilities: a 

newly infected human progresses 𝐸𝑖 → 𝐼𝑖  with 

probability 𝛼1/𝑘1 , and a newly infected small 

mammal progresses 𝐸𝑠 → 𝐼𝑠  with probability 

𝛼3/𝑘4. Thus the reduced NGM on the infectious 

subspace ( 𝐼𝑖 , 𝐼𝑠 ) is 

𝐾red =

(

 
 

𝛼1𝛽2

𝑘1𝑘2

𝛼1𝛽1

𝑘1𝑘2

0
𝛼3𝛽3

𝑘4𝑘5)

 
 

 

Since 𝐾red  is upper triangular, its eigenvalues 
are the diagonal entries. Therefore, 

𝑅0 = max {
𝛼1𝛽2

𝑘1𝑘2
,
𝛼3𝛽3

𝑘4𝑘5
} 

or, in full parameters, 
𝑅0

= max {
𝛼1𝛽2

(𝛼1 + 𝛼2 + 𝜇𝑖)(𝜇𝑖 + 𝛿𝑖 + 𝛾)
,

𝛼3𝛽3

(𝜇𝑠 + 𝛼3)(𝜇𝑠 + 𝛿𝑠)
} 

 

Stability of disease-free equilibrium 

To establish global stability conditions for equi-

libria 𝐸0 in dynamical systems, the framework 

proposed by Castillo-Chavez and Song (22) can 

be effectively utilized. This framework empha-

sizes the importance of identifying basins of at-

traction, which states that if the model system 

can be written in the following form: 
𝑑℧

 𝑑𝑡
= 𝐹(℧, 𝑍) 

𝑑𝑍

 𝑑𝑡
= 𝐺(℧, 𝑍)  𝑎𝑛𝑑   𝐺(℧, 0) = 0, 

here ℧ ∈ ℝ𝑛 are the uninfected individuals and 

𝑍 ∈ ℝ𝑚 describes the infected individuals. Ac-

cording to this notation, the disease-free equilib-

rium is given by 𝑄0 = (℧0,0). Now, the follow-

ing two conditions guarantee the global stability 

of the disease-free equilibrium. 

G1:   For 
d𝑋

 d𝑡
= 𝐹(℧, 0), ℧0 is globally asymptot-

ically stable. 

G2 :  𝐺(℧, 𝑍) = 𝐵𝑍 − 𝐺 ˆ(℧, 𝑍)  where 

𝐺 ˆ(℧, 𝑍) ≥ 0  for ℧, 𝑍 ∈ Ω . 

here 𝐵 = 𝐷𝑧𝐺(℧0,0) is a 𝑀-matrix and Ω is the 

feasibility of the model. The following theorem 

then defines the global stability of 𝐸0. 

 

Lemma 1: The equilibrium point 𝑄0 = (℧0,0) 

exhibits global asymptotic stability under the 

condition that 𝑅0 ≤ 1 and when the assumptions 

𝐺1 and 𝐺2 are satisfied. 
Following this, the next theorem establishes the 

global stability of the disease-free equilibrium 

𝐸0 within the context of our proposed model sys-
tem.   

 

Theorem 2: The disease-free equilibrium point 

𝐸0 is considered globally asymptotically stable 

provided that 𝑅0 ≤ 1. 

 

Stability of endemic equilibrium 

The Routh-Hurwitz criterion is a powerful tool 

for analyzing the local stability of endemic equi-

libria in epidemic models. To establish local as-

ymptotic stability, one must derive conditions 
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based on the characteristic polynomial of the 

system's linearized equations around the en-

demic equilibrium. 

The Jacobian matrix about the endemic equilib-

ria ϕ𝑀𝐸𝐸   is given as : 

 

𝐽 =

[
 
 
 
 
 
 
 
𝑐11 0 𝑐13 𝑐14 0 0 0 𝑐18

𝑐21 𝑐22 𝑐23 0 0 0 0 𝑐28

0 𝑐32 𝑐33 0 0 0 0 0
0 𝑐42 0 𝑐44 0 0 0 0
0 0 𝑐53 𝑐54 𝑐55 0 0 0
0 0 0 0 0 𝑐66 0 𝑐68

0 0 0 0 0 𝑐76 𝑐77 𝑐78

0 0 0 0 0 0 𝑐87 𝑐88]
 
 
 
 
 
 
 

, 

here, 

𝑐11 = −(
𝛽1𝐼𝑠 + 𝛽2𝐼ℎ

𝑁𝑖
) − 𝜇𝑖,  𝑐13 = −

𝛽2𝑆𝑖

𝑁𝑖
, 𝑐14 = 𝜙 , 𝑐18 = −

𝛽1𝑆𝑖

𝑁𝑖
, 𝑐21 =

𝛽1𝐼𝑠 + 𝛽2𝐼ℎ
𝑁𝑖

,  𝑐22 = −(𝛼1 + 𝛼2 + 𝜇𝑖),
 

𝑐32 = 𝛼1,  𝑐33 = −(𝜇𝑖 + 𝛿𝑖 + ∆), 𝑐42 = 𝛼2,  𝑐44 = −(𝜑 + 𝜏 + 𝛿𝑖 + 𝜇𝑖), 𝑐53 = ∆ , 𝑐54 = 𝜏,  𝑐55 = −𝜇𝑖

𝑐66 = −(𝜇𝑠 +
𝛽3𝐼𝑠
𝑁𝑠

) ,  𝑐68 = −
𝛽3𝑆𝑠

𝑁𝑠
, 𝑐76 =

𝛽3𝐼𝑠
𝑁𝑠

,  𝑐77 = −(𝜇𝑠 + 𝛼3), 𝑐78 =
𝛽3𝑆𝑠

𝑁𝑠
,  𝑐87 = 𝛼3 and 𝑐88 = −(𝜇𝑠 + 𝛿𝑠).

 

 

The characteristic equation of 𝐽 is given as: 
1

𝑁𝑖𝑁s

[(−𝑥 − 𝜇i)(−𝜙𝛼2(𝐼s𝛽1 + 𝐼i𝛽2)(𝑥 + 𝛾 + 𝛿i + 𝜇i) + (−𝑥 − 𝜏 − 𝜑 − 𝛿i − 𝜇i)

 (𝑆i𝛼1𝛽2(𝑥 + 𝜇i) − (𝑥 + 𝛼1 + 𝛼2 + 𝜇i)(𝑆r𝛼3𝛽3(𝑥 + 𝜇s) − (𝑥 + 𝛼3 + 𝜇s)

  (𝐼s𝛽3 + 𝑁s(𝑥 + 𝜇s))(𝑥 + (𝜇s + 𝛿s)))] = 0.
 

Which can be further written as: 

𝑥8 + 𝐶1𝑥
7 + 𝐶2𝑥

6 + 𝐶3𝑥
5 + 𝐶4𝑥

4 + 𝐶5𝑥
3 + 𝐶6𝑥

2 + 𝐶7𝑥 + 𝐶8 = 0
, 

where 𝐶𝑖  's for 𝑖 = 1,2,… ,8 are the coefficients 

of 𝑥8−𝑖 , after expressing the polynomial in its 
standard form. 

Note: To derive the condition for the stability of 

ϕ𝑀𝐸𝐸, we will perform the following substitu-
tions:  

𝑃 =
𝐶1𝐶2−𝐶0𝐶3

𝐶1
,  𝑄 =

𝐶1𝐶4−𝐶0𝐶5

𝑐1
, 𝑅 =

𝐶1𝐶6−𝐶0𝐶7

𝐶1
,  𝑆 = 𝐶8 , 𝑃∗ =

𝑝𝐶3−𝐶1𝑄

𝑃
,  𝑄∗ =

𝑃𝐶5−𝐶1𝑅

𝑃
, 𝑅∗ =

𝑃𝐶7−𝐶1𝑆

𝑃
,  𝑀 =

𝑃∗𝑄−𝑃𝑄∗

𝑃∗ , 𝑁 =
𝑃∗𝑅−𝑃𝑅∗

𝑃∗ ,  𝑇 =
𝑃∗𝑆

𝑃∗ , 𝑀∗ =
𝑀𝑄∗−𝑃∗𝑁

𝑀
,  𝑁∗ =

𝑀𝑅∗−𝑃∗𝑇

𝑀
, 𝑋 =

𝑀∗𝑁−𝑀𝑁∗

𝑀∗ . 

By implementing these substitutions, we can 

conclude this section with the following theo-

rem: 

Theorem 3: The endemic equilibrium point 

𝜙𝑀𝐸𝐸  exhibits local asymptotic stability when 

𝑅0 > 1  and the following conditions are ful-
filled: 

1. 𝐶1 > 0 . 

2. 𝐶1𝐶2 > 𝐶3 . 

3. 𝐶1𝐶2𝐶3 + 𝐶0𝐶1𝐶5 > 𝐶0𝐶3
2 + 𝐶1

2𝐶4 

4. 𝑃∗𝑄 > 𝑃𝑄∗,  𝑀𝑄∗ > 𝑃∗𝑁,    𝑀∗𝑁 >
𝑀𝑁∗,      𝑋𝑁∗ > 𝑇𝑀∗. 

 

Numerical Methods 

This section provides an in-depth discussion of 

the two numerical methods employed to solve 

the system of ordinary differential (Eq.1) de-

scribing the Mpox transmission model: the 4th-
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order Runge-Kutta method and the Backward 

Euler method. 

 

Runge-Kutta Method  

The 4th-order Runge-Kutta method (RK4) is a 

prominent numerical technique for solving ordi-

nary differential equations (ODEs), known for 

its balance of simplicity, accuracy, and compu-

tational efficiency. RK4 computes four interme-

diate slopes at each time step, which are then av-

eraged to yield a more precise solution compared 

to simpler methods, such as Euler's. This method 

is particularly effective for non-stiff equations, 

as evidenced by various studies demonstrating 

its stability and convergence properties. This 

section details the application of the RK4 for 

solving the system of (Eq. 1), as we can see in 

Table 2. For each differential equation, we com-

pute the solution at the next time step using the 

following RK4 formula: 

𝑦𝑛+1 = 𝑦𝑛 + 1/6(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4), 

where: 

𝑘1 = ℎ ∗ 𝑓(𝑡𝑛, 𝑦𝑛) 
𝑘2 = ℎ ∗ 𝑓(𝑡𝑛 + ℎ/2, 𝑦𝑛 + 𝑘1/2) 
𝑘3 = ℎ ∗ 𝑓(𝑡𝑛 + ℎ/2, 𝑦𝑛 + 𝑘2/2) 

𝑘4 = ℎ ∗ 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3). 

 
Table 2: Applying the RK4 to the system of (Eq.1) 

 

Variable Differential Equation Function Definition 
𝑺𝒊 𝑑𝑆𝑖

𝑑𝑡
= θ𝑖 − (β1𝐼𝑠 + β2𝐼𝑖)

𝑆𝑖

𝑁𝑖
− μ𝑖𝑆𝑖

+ φ𝑄𝑖  

𝑓𝑆 = θ𝑖 − β1𝐼𝑠 + β2𝐼𝑖
𝑆𝑖

𝑁𝑖
− μ𝑖𝑆𝑖

+ φ𝑄𝑖  
𝑬𝒊 𝑑𝐸𝑖

𝑑𝑡
= (β1𝐼𝑠 + β2𝐼𝑖)

𝑆𝑖

𝑁𝑖

− (α1 + α2 + μ𝑖)𝐸𝑖  

𝑓𝐸 = β1𝐼𝑠 + β2𝐼𝑖
𝑆𝑖

𝑁𝑖

− (α1 + α2 + μ𝑖)𝐸𝑖  
𝑰𝒊 𝑑𝐼𝑖

𝑑𝑡
= α1𝐸𝑖 − (μ𝑖 + δ𝑖 + Δ)𝐼𝑖 

𝑓𝐼 = α1𝐸𝑖 − (μ𝑖 + δ𝑖 + Δ)𝐼𝑖 

𝑸𝒊 𝑑𝑄𝑖

𝑑𝑡
= α2𝐸𝑖 − (φ + τ + δ𝑖 + μ𝑖)𝑄𝑖  

𝑓𝑄 = α2𝐸𝑖 − (φ + τ + δ𝑖 + μ𝑖)𝑄𝑖  

𝑹𝒊 𝑑𝑅𝑖

𝑑𝑡
= τ𝑄𝑖 + Δ𝐼𝑖 − μ𝑖𝑅𝑖 

𝑓𝑅 = τ𝑄𝑖 + Δ𝐼𝑖 − μ𝑖𝑅𝑖  

𝑺𝒔 𝑑𝑆𝑠

𝑑𝑡
= θ𝑠 − β3

𝑆𝑠𝐼𝑠
𝑁𝑠

− μ𝑠𝑆𝑠 𝑓𝑆𝑠
= θ𝑠 − β3

𝑆𝑠𝐼𝑠
𝑁𝑠

− μ𝑠𝑆𝑠  

𝑬𝒔 𝑑𝐸𝑠

𝑑𝑡
= β3

𝑆𝑠𝐼𝑠
𝑁𝑠

− (μ𝑠 + α3)𝐸𝑠  𝑓𝐸𝑠
= β3

𝑆𝑠𝐼𝑠
𝑁𝑠

− (μ𝑠 + α3)𝐸𝑠 

𝑰𝒔 𝑑𝐼𝑠
𝑑𝑡

= α3𝐸𝑠 − (μ𝑠 + δ𝑠)𝐼𝑠 
𝑓𝐼𝑠 = α3𝐸𝑠 − (μ𝑠 + δ𝑠)𝐼𝑠 

 

After applying the all four stages of RK4 we 

have that: 

𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 + 1/6(𝑘1
𝑆 + 2𝑘2

𝑆 + 2𝑘3
𝑆 + 𝑘4

𝑆) 

𝐸𝑖
𝑛+1 = 𝐸𝑖

𝑛 + 1/6(𝑘1
𝐸 + 2𝑘2

𝐸 + 2𝑘3
𝐸 + 𝑘4

𝐸) 

𝐼𝑖
𝑛+1 = 𝐼𝑖

𝑛 + 1/6(𝑘1
𝐼 + 2𝑘2

𝐼 + 2𝑘3
𝐼 + 𝑘4

𝐼) 

𝑄𝑖
𝑛+1 = 𝑄𝑖

𝑛 + 1/6(𝑘1
𝑄 + 2𝑘2

𝑄 + 2𝑘3
𝑄 + 𝑘4

𝑄) 

𝑅𝑖
𝑛+1 = 𝑅𝑖

𝑛 + 1/6(𝑘1
𝑅 + 2𝑘2

𝑅 + 2𝑘3
𝑅 + 𝑘4

𝑅) 

𝑆𝑠
𝑛+1 = 𝑆𝑠

𝑛 + 1/6(𝑘1
𝑆𝑠 + 2𝑘2

𝑆𝑠 + 2𝑘3
𝑆𝑠 + 𝑘4

𝑆𝑠) 

𝐸𝑠
𝑛+1 = 𝐸𝑠

𝑛 + 1/6(𝑘1
𝐸𝑠 + 2𝑘2

𝐸𝑠 + 2𝑘3
𝐸𝑠 + 𝑘4

𝐸𝑠) 

𝐼𝑠
𝑛+1 = 𝐼𝑠

𝑛 + 1/6(𝑘1
𝐼𝑠 + 2𝑘2

𝐼𝑠 + 2𝑘3
𝐼𝑠 + 𝑘4

𝐼𝑠). 

 

Figure 2 illustrates the time evolution of various 

human population compartments using the RK4 

Method. The compartments include susceptible 

𝑆𝑖 in (a) , exposed 𝐸𝑖 , infected 𝐼𝑖 , isolated 𝑄𝑖 , 

and recovered 𝑅𝑖 populations in ( b). The simu-
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lation highlights how the human population dy-

namics respond to factors such as disease trans-

mission, recovery, and death rates over time. 

Figure 3 represents the time evolution of the 

small mammal population compartments using 

the RK4 Method. (a) displays changes in the sus-

ceptible 𝑆𝑠 and (b) showing the changes in the 

exposed 𝐸𝑠 , and infected 𝐼𝑠  populations. The 
graph demonstrates how disease transmission 

and recovery processes affect the small mammal 

population over time. 

 

 
 

Figure 2: Human population dynamics: (a) Dynamics of susceptible humans ( 𝑆𝑖  ); (b) .Trends of exposed, infected, quar-

antined, and recovered humans 𝜏 = 0.52, 𝛼2 = 2.0, 𝛼1 = 0.2, 𝛽2 = 0.000063, 𝛽1 = 0.0025, 𝜃𝑖 = 1,160,000: Parameters 

𝜇𝑖 = 0.008, 𝛿𝑖 = 0.2 
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Figure 3: Small mammal population dynamics: (a) Dynamics of susceptible small mammals (𝑆𝑠); (b) Trends of 

exposed and infected small mammals ⋅ 𝜇𝑠 = 0.002, 𝛿𝑠 = 0.5, 𝛼3 = 3.0, 𝛽3 = 0.0027, 𝜃𝑠 = 200,000: Parameters 

 

Backward Euler Method 

The Backward Euler method is a powerful im-

plicit technique for solving ordinary differential 

equations (ODEs), particularly effective for stiff 

problems. Its stability stems from the require-

ment to solve for the future state at each step, 

which allows it to handle rapid changes in solu-

tion components.  

 

General Form of the Backward Euler Method 

For a differential equation of the form: 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 

the Backward Euler method updates the solution 

as: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1), 

here, ℎ is the step size, and 𝑦𝑛+1 is the unknown 
state at the next time step, which must be solved 

for. 

 

Applying the Backward Euler Method 
We apply the Backward Euler method to each of 

the equations in system (Eq.1), as we see in Ta-

ble 3, resulting in implicit equations that must be 

solved at each time step. 

 



Movaheedi & Rahmani. Afghanistan Journal of Infectious Diseases. 2026; 4(1):94-113 

 

104 

 

Table 3: Applying the backward Euler method equation to the system of equation (Eq.1) 

 

Vari-

able 

Differential Equation Backward Euler Method Equation Solve for 

𝑺𝒊 𝑑𝑆𝑖

𝑑𝑡
= 𝜃𝑖 − (𝛽1𝐼𝑠 + 𝛽2𝐼𝑖)

𝑆𝑖

𝑁𝑖

− 𝜇𝑖𝑆𝑖

+ 𝜙𝑄𝑖  

𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 + ℎ (𝜃𝑖 − (𝛽1𝐼𝑠
𝑛+1 + 𝛽2𝐼𝑖

𝑛+1)
𝑆𝑖

𝑛+1

𝑁𝑖

− 𝜇𝑖𝑆𝑖
𝑛+1 + 𝜙𝑄𝑖

𝑛+1) 

𝑆𝑖
𝑛+1 

𝑬𝒊 𝑑𝐸𝑖

𝑑𝑡
= (𝛽1𝐼𝑠 + 𝛽2𝐼𝑖)

𝑆𝑖

𝑁𝑖

− (𝛼1 + 𝛼2

+ 𝜇𝑖)𝐸𝑖 

𝐸𝑖
𝑛+1 = 𝐸𝑖

𝑛 + ℎ ((𝛽1𝐼𝑠
𝑛+1 + 𝛽2𝐼𝑖

𝑛+1)
𝑆𝑖

𝑛+1

𝑁𝑖

− (𝛼1 + 𝛼2 + 𝜇𝑖)𝐸𝑖
𝑛+1) 

𝐸𝑖
𝑛+1 

𝑰𝒊 𝑑𝐼𝑖
𝑑𝑡

= 𝛼1𝐸𝑖 − (𝜇𝑖 + 𝛿𝑖

+ Δ)𝐼𝑖 

𝐼𝑖
𝑛+1 = 𝐼𝑖

𝑛 + ℎ ⋅ (𝛼1𝐸𝑖
𝑛+1 − (𝜇𝑖 + 𝛿𝑖 + Δ)𝐼𝑖

𝑛+1) 𝐼𝑖
𝑛+1 

𝑸𝒊 𝑑𝑄𝑖

𝑑𝑡
= 𝛼2𝐸𝑖 − (𝜙 + 𝜏 + 𝛿𝑖

+ 𝜇𝑖)𝑄𝑖  

𝑄𝑖
𝑛+1 = 𝑄𝑖

𝑛 + ℎ(𝛼2𝐸𝑖
𝑛+1

− (𝜙 + 𝜏 + 𝛿𝑖 + 𝜇𝑖)𝑄𝑖
𝑛+1) 

𝑄𝑖
𝑛+1 

𝑹𝒊 𝑑𝑅𝑖

𝑑𝑡
= 𝜏𝑄𝑖 + Δ𝐼𝑖 − 𝜇𝑖𝑅𝑖 

𝑅𝑖
𝑛+1 = 𝑅𝑖

𝑛 + ℎ(𝜏𝑄𝑖
𝑛+1 + Δ𝐼𝑖

𝑛+1 − 𝜇𝑖𝑅𝑖
𝑛+1) 𝑅𝑖

𝑛+1 

𝑺𝒔 𝑑𝑆𝑠

𝑑𝑡
= 𝜃𝑠 − 𝛽3

𝑆𝑠𝐼𝑠
𝑁𝑠

− 𝜇𝑠𝑆𝑠 𝑆𝑠
𝑛+1 = 𝑆𝑠

𝑛 + ℎ(𝜃𝑠 − 𝛽3

𝑆𝑠
𝑛+1𝐼𝑠

𝑛+1

𝑁𝑠
− 𝜇𝑠𝑆𝑠

𝑛+1) 
𝑆𝑠

𝑛+1 

𝑬𝒔 𝑑𝐸𝑠

𝑑𝑡
= 𝛽3

𝑆𝑠𝐼𝑠
𝑁𝑠

− (𝜇𝑠

+ 𝛼3)𝐸𝑠 

𝐸𝑠
𝑛+1 = 𝐸𝑠

𝑛 + ℎ (𝛽3

𝑆𝑠
𝑛+1𝐼𝑠

𝑛+1

𝑁𝑠
− (𝜇𝑠 + 𝛼3)𝐸𝑠

𝑛+1) 
𝐸𝑠

𝑛+1 

𝑰𝒔 𝑑𝐼𝑠
𝑑𝑡

= 𝛼3𝐸𝑠 − (𝜇𝑠 + 𝛿𝑠)𝐼𝑠 
𝐼𝑠
𝑛+1 = 𝐼𝑠

𝑛 + ℎ(α3𝐸𝑠
𝑛+1 − (μ𝑠 + δ𝑠)𝐼𝑠

𝑛+1). 𝐼𝑠
𝑛+1 

 

The numerical behavior of the human population 

compartments is investigated using the Back-

ward Euler method. Simulations are carried out 

with the parameter values 𝜃𝑖 =  1160000, 𝛽1 =
 0.0025, 𝛽2 =  0.000063, 𝛼1 =  0.2, 𝛼2 =
 2.0, 𝜙 =  2.0, 𝜏 =  0.52, Δ =  0.83,\𝑚𝑢𝑖  =
 0.008, 𝑎𝑛𝑑 𝛿𝑖 =  0.2.  The initial population 

sizes are chosen as 𝑆𝑖(0)  =  1000000, 𝐸𝑖(0)  =
 100, 𝐼𝑖(0)  =  50, 𝑄𝑖(0)  =  20, 𝑎𝑛𝑑 𝑅𝑖(0)  =
 0. Figure  4(a) and 4(b) display the resulting 

temporal evolution of the human compartments. 

The compartmental dynamics of the small mam-

mal population are examined using the Back-

ward Euler numerical method. Simulations are 

performed with the parameter values 𝜃𝑠 =
 200000, 𝛽3 =  0.0027, 𝛼3 =  3.0, 𝜇𝑠 =
 0.002, and  𝛿𝑠 =  0.5.  The initial population 

sizes are selected as  𝑆𝑠(0)  =
 200000, 𝐸𝑠(0)  =  100, 𝑎𝑛𝑑 𝐼𝑠(0)  =  50.  Fig-
ure  5(a) and 5(b) illustrate the resulting temporal 

evolution of the susceptible, exposed, and in-

fected small mammal compartments. 
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Figure 4: Human population dynamics obtained using the Backward Euler method: (a) susceptible humans; (b) 

exposed, infected, quarantined, and recovered humans 

 



Movaheedi & Rahmani. Afghanistan Journal of Infectious Diseases. 2026; 4(1):94-113 

 

106 

 

 

 
Figure 5: Small mammal population dynamics obtained using the Backward Euler method: (a) susceptible 

small mammals; (b) exposed and infected small mammals 

 

Comparison Criteria 

The 4th-order Runge-Kutta (RK4) and Back-

ward Euler methods were evaluated for solving 

the Mpox transmission model. While both meth-

ods produced visually similar graphs, indicating 

comparable numerical solutions, key distinc-

tions emerged upon analyzing computational ef-

ficiency, stability, error, and complexity (Table 

4). 
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Table 4: Comparison Criteria for both numerical method (RK4 and Backward Euler) used to solve the Eq. (1) 

 

Comparison Cri-

teria 

4th-order Runge-Kutta (RK4) (Reference) Backward Euler 

Accuracy and 

Convergence 

- Higher accuracy in non-stiff cases due to 

four-stage process, closely approximating ex-

act solutions (20). 

- Suitable for a wide range of applications due 

to good convergence characteristics (21). 

- High accuracy, particularly suited 

for stiff equations, where stability 

demands higher-order accuracy (23, 

24). 

Computational 

Efficiency 

- Requires fewer computational resources for 

non-stiff equations due to its explicit nature. 

- Executes faster at smaller step sizes without 

the need for iterative solutions (21, 22). 

- Incurs higher computational cost 

due to the implicit nature, requiring 

solutions of algebraic equations at 

each step. 

- Advances in backward integration 

have reduced overhead, making it 

feasible for stiff ODEs (25, 26). 

Stability - Conditionally stable, necessitating smaller 

step sizes for accuracy in stiff equations, limit-

ing use in such scenarios. 

- A-stable, allowing for larger step 

sizes without sacrificing stability, 

thus suited for stiff models (23, 24). 

Error Analysis - Shows smaller errors at moderate step sizes 

in non-stiff equations, yielding accurate re-

sults. 

- Maintains comparable accuracy in 

stiff conditions, but may require 

higher computational costs. 

Complexity of 

Implementation 

- Straightforward to implement, beneficial for 

rapid testing and multiple simulations. 

- Requires iterative methods at each 

time step, adding coding complexity 

and potential debugging challenges, 

especially in larger systems (27, 28). 

 

Despite RK4's benefits for non-stiff cases, its 

conditional stability limits its effectiveness for 

stiff problems. Conversely, the Backward Euler 

method, with its inherent A-stability, is well-

suited for stiff equations, although at a poten-

tially higher computational expense due to its 

implicit nature. This underscores the importance 

of selecting appropriate numerical methods 

based on the characteristics of the ODE being 

solved. 
 

Implementation 

Model Setup 

The Mpox transmission model was set up in 

MATLAB, using compartmental deterministic 

modeling to represent disease dynamics across 

human and small mammal populations. The 

model structure includes different compartments 

for humans (Susceptible, Exposed, Infected, Iso-

lated, Recovered) and small mammals (Suscep-

tible, Exposed, Infected). MATLAB is particu-

larly suitable for this application because it sup-

ports matrix operations and integration, making 

it ideal for solving systems of ordinary differen-

tial equations (ODEs) used in epidemiological 

modeling. 
 

Algorithm Implementation 

The model utilizes two numerical algorithms for 

solving the system of ODEs: the 4th-order 

Runge-Kutta (RK4) method and the Backward 

Euler method. 
 

Runge-Kutta 4th Order Method (RK4) 

1. Initialization: Define the initial values for 

each compartment and the model parameters. 

2. Iteration: For each time step: 

   - Compute intermediate values (𝑘1, 𝑘2, 𝑘3, and 

𝑘4 ) for each compartment. 

 % k1 for Susceptible humans 

  K_1_S_i = h * fS_i(S_i(i), I_s(i), I_i(i), 

Q_i(i)); 

 % Similar computations for other compart-

ments 

 S_i(i+1) = S_i(i) + (1/6) * (k1_S_i + 2*k2_S_i 

+ 2*k3_S_i + k4_S_i); 
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   - Update each compartment's value by averag-

ing these intermediate values. 

3. Code: Sample snippet: 

 

Backward Euler Method 

1. Initialization: Define initial values and param-

eters as with RK4. 

2. Implicit Calculation: For each time step, solve 

implicit equations using fsolve for each com-

partment. 

3. Code: Sample snippet: 

 

Results 
 

Accuracy Comparison 

The accuracy of both the 4th-order Runge-Kutta 

(RK4) and Backward Euler methods was evalu-

ated using error norms. Due to RK4’s four-stage 

intermediate steps, it generally showed higher 

accuracy in non-stiff cases. This method closely 

approximated the expected results for each com-

partment, as observed in error plots for the sus-

ceptible, exposed, infected, isolated, and recov-

ered populations of both humans and small 

mammals. 

Plotting solutions from both methods over iden-

tical time intervals highlighted the RK4 

method's precision, especially in rapid transi-

tions (e.g., initial infection surge in the suscepti-

ble population). Error norms confirmed that the 

RK4 method achieved lower cumulative error 

compared to the Backward Euler method in non-

stiff scenarios. 

Stability 

Stability was examined by running each method 

across varying time step sizes. While the RK4 

method maintained stability at smaller time 

steps, it exhibited instability with larger time 

steps in stiff regions, such as during sudden in-

fection spikes. Conversely, the Backward Euler 

method demonstrated greater stability across all 

time steps, especially in stiff scenarios, main-

taining solution integrity even with larger time 

steps. 

 

Computational Efficiency 

Comparing the CPU time, memory usage, and 

number of iterations revealed that RK4 required 

more iterations at smaller time steps due to its 

conditional stability in stiff regions. The Back-

ward Euler method, being implicit, required 

fewer iterations, particularly in stiff scenarios, 

but incurred higher memory and CPU costs due 

to iterative solutions at each step. Generally, for 

non-stiff cases, RK4 achieved faster execution 

with lower memory demands. 

 

Real Data Forecasting 

To evaluate the practical applicability of the pro-

posed human–animal Mpox transmission model 

and to assess the performance of the numerical 

schemes under real-world conditions, officially 

reported surveillance data were obtained from 

the Centers for Disease Control and Prevention 

(CDC) (29), United States. The dataset consists 

of daily confirmed U.S. Clade II Mpox cases re-

ported to the CDC from May 2022 up to Decem-

ber 10, 2025. According to the CDC definition, 

the reporting date corresponds to the earliest 

available information regarding illness onset, di-

agnosis date, laboratory confirmation, or entry 

into the CDC reporting system. Therefore, the 

CDC data represent reported cases rather than 

the true underlying infection incidence. 

In the proposed eight-dimensional compart-

mental model described in Section 2, disease 

transmission dynamics are governed by epide-

miological states that are not directly observable 

in surveillance data. To establish a consistent 

comparison between the model output and the 

CDC-reported cases, an observation process was 

introduced. Specifically, daily reported Mpox 

cases were assumed to correspond to a fraction 

of infectious individuals who are detected and 

options = optimset('Display', 'off'); 

   x_0 = [S_i(i); E_i(i); I_i(i); Q_i(i); R_i(i); 

S_s(i); E_s(i); I_s(i)]; 

   sol = fsolve(@(x) backwardEulerSystem(x, 

S_i(i), E_i(i), ... ), x0, options); 
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reported after a short diagnosis delay. Accord-

ingly, the reported incidence was defined as 

Reported(t) = 𝜌 𝛾 𝐼𝑖(𝑡 − 𝜏) 

where 𝜌 denotes the reporting rate, 𝛾 is the tran-
sition rate from the infectious compartment, and 

𝜏 represents the average reporting delay. This 
formulation provides a direct and epidemiologi-

cally meaningful link between the CDC case 

definition and the structure of the proposed 

model (30). 

To reduce reporting noise and weekly fluctua-

tions inherent in daily surveillance data, the of-

ficial 7-day moving average of reported cases 

was used for calibration and comparison. Model 

parameters were estimated by minimizing the 

mean squared error between the CDC-reported 

daily cases and the model-predicted reported in-

cidence. After calibration, the full eight-dimen-

sional system was solved numerically using both 

the (RK4) method and the Backward Euler 

method. 

Figure 6 compares the CDC-reported daily 

Mpox cases with the model-predicted reported 

incidence obtained using the RK4 and Backward 

Euler methods. Both numerical schemes suc-

cessfully reproduce the overall temporal trend of 

the reported data. The RK4 method captures 

short-term variations more accurately, whereas 

the Backward Euler method produces smoother 

trajectories, reflecting its enhanced numerical 

stability. 

 

 
Figure 6: CDC-reported daily Mpox cases and model predictions (RK4 and BE). 

 

Figure 7 presents the cumulative number of 

Mpox cases, comparing the CDC-reported cu-

mulative cases with cumulative values predicted 

by the proposed model. The close agreement be-

tween the simulated and reported cumulative 

trends demonstrates that the calibrated model re-

liably captures the overall progression of the out-

break. 
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Figure 7: Cumulative CDC-reported Mpox cases and cumulative model predictions. 

 

A 30-day forecast beyond the last available data 

point is shown in Figure 8. Assuming constant 

model parameters and unchanged intervention 

measures, the proposed model predicts a gradual 

evolution of daily reported Mpox cases. Con-

sistent with the previous comparisons, the RK4 

method exhibits higher sensitivity to short-term 

dynamics, while the Backward Euler method 

yields more stable and conservative long-term 

projections. 

 
Figure 8: Thirty days forecast of daily reported Mpox cases using the proposed model 



Movaheedi & Rahmani. Afghanistan Journal of Infectious Diseases. 2026; 4(1):94-113 

 

111 

 

 

Overall, these results confirm that the real-data 

calibration and forecasting are fully consistent 

with the proposed eight-dimensional human–an-

imal Mpox transmission model and provide a 

meaningful evaluation of the numerical schemes 

under realistic epidemiological reporting condi-

tions. 

 

Discussion 
 

The numerical performance of the RK4 and 

Backward Euler methods observed in this study 

is consistent with existing findings in the litera-

ture on numerical methods for epidemiological 

modeling. Explicit Runge–Kutta schemes are 

widely reported to provide high accuracy and 

computational efficiency when applied to non-

stiff systems with smoothly varying dynamics 

(6,7,19,20). The superior accuracy and lower 

computational cost of RK4 in the non-stiff 

phases of the proposed Mpox transmission 

model are therefore in agreement with these ear-

lier studies and confirm its suitability for short-

term epidemic simulations. 

The stronger stability of the Backward Euler 

method identified in this study also aligns with 

previous research emphasizing the effectiveness 

of implicit methods for stiff initial value prob-

lems. Numerous studies have shown that im-

plicit schemes, including Backward Euler and 

backward differentiation formulae, remain sta-

ble under rapid dynamic changes where explicit 

methods may fail or require very small step sizes 

(22–26,30). The present results extend these 

conclusions to a coupled human–animal Mpox 

transmission model, demonstrating that Back-

ward Euler remains reliable during stiff epi-

demic phases such as sudden infection surges or 

strong isolation effects. 

In comparison with existing Mpox modeling 

studies that primarily focus on transmission dy-

namics and control strategies without explicitly 

assessing numerical solver performance 

(12,13,30), the present work provides a clear 

methodological contribution. By directly com-

paring explicit and implicit numerical methods 

under identical model structures and parameter 

settings, this study highlights how solver accu-

racy, stability, and efficiency depend on epi-

demic phase and system stiffness. This solver-

oriented perspective complements earlier Mpox 

modeling efforts and adds methodological clar-

ity to the literature. 

The real-data calibration using CDC-reported 

Mpox cases further supports the practical rele-

vance of these findings. Recent data-driven stud-

ies emphasize the importance of capturing short-

term fluctuations and behavioral effects in Mpox 

surveillance data (29). Consistent with these ob-

servations, the present results show that RK4 is 

more responsive to short-term variations in re-

ported cases, while the Backward Euler method 

produces smoother trajectories that are more 

suitable for long-term projections. Similar nu-

merical behavior has been reported in studies of 

other infectious disease models, including tuber-

culosis and typhoid fever, solved using Runge–

Kutta and implicit numerical approaches 

(11,27). 

Overall, the strong agreement between the pre-

sent findings and the existing numerical and ep-

idemiological literature reinforces the validity of 

the proposed modeling framework. By situating 

the efficiency–stability trade-off of RK4 and 

Backward Euler within a two-population Mpox 

transmission context, this study advances cur-

rent understanding of numerical method selec-

tion in infectious disease modeling. These re-

sults underline that solver choice should be 

guided by system stiffness, forecasting horizon, 

and computational constraints, thereby support-

ing more reliable computational frameworks for 

Mpox forecasting and broader infectious disease 

modeling applications. 

 

Conclusion 
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This study shows that both the 4th-order Runge-

Kutta (RK4) and Backward Euler methods offer 

reliable solutions for modeling Mpox transmis-

sion, with each method excelling under different 

conditions. The RK4 method is recommended 

for non-stiff epidemiological models due to its 

accuracy and computational efficiency, making 

it suitable when rapid transitions are minimal. In 

contrast, the Backward Euler method, with its in-

herent stability, is ideal for models with stiff 

characteristics, albeit with a higher computa-

tional cost. 

Future research should consider adaptive time-

stepping strategies that dynamically adjust to 

stiff and non-stiff phases, enhancing the perfor-

mance of both methods. Additionally, incorpo-

rating variable parameters over time could im-

prove the realism of the model, making it more 

adaptable to actual disease dynamics and poten-

tially increasing the predictive accuracy of epi-

demiological modeling. 
 

Data Availability 
 

All data used in this study are publicly available 

from the Centers for Disease Control and Pre-

vention (CDC) Mpox Data and Research data-

base (29) and the Macrotrends global death rate 

database (16). 
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