Diversity of symbiotic bacteria in reproductive tracts and mid-gut of Culex pipiens

Main Article Content

Leila Nourani



Background Culex pipiens is considered a vector for the transmission of infectious viral and parasitic diseases. To control this mosquito vector, investigating symbiotic bacteria colonized inside the mosquitoes’ organs to impede the transmission procedure of pathogens is of recent interest to researchers.

Methods This revision was intended to provide a comprehensive overview of the diversity of endosymbiont bacteria residing in different tissues of Cx. pipiens globally by using reports in Google Scholar, PubMed, and Science Direct until May 2024.

Results The results showed that more than 50 bacterial genera have been reported in Culex tissues in which the bacterial diversity was higher in mid-gut than eggs or whole body in Cx. pipiens. More than 65% of samples were insectary-reared mosquitoes than wild types. Various methods based on culture-dependent and culture-independent approaches followed by molecular techniques such as 16SrRNA Illumina sequencing, Next Generation Sequencing (NGS), RNA shotgun metagenomic sequencing (RNA-seq), RT-PCR, and MALDI-TOF MS have been used for the recognition of bacterial at genera or species levels. The most favorable gene for molecular analysis via PCR is 16SrRNA, however, the wsp gene was another candidate used for identification of bacterial community.

Conclusion These results provide a library of defined bacteria associated with Cx. pipiens. Characterization of tissue-specific and host-specific bacterial communities shed light on further studies pursuing the functional role of endosymbiont organisms in control strategies and vector biology.

Article Details

How to Cite
Nourani, L. (2024). Diversity of symbiotic bacteria in reproductive tracts and mid-gut of Culex pipiens. Afghanistan Journal of Infectious Diseases, 2(2), 91–104. https://doi.org/10.60141/AJID/V.2.I.2/10
Review Article


Van den Hurk AF, Ritchie SA, Mackenzie JS. Ecology and geographical expansion of Japanese encephalitis virus. Annual review of entomology. 2009;54:17-35.

Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V, Martina BE, et al. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health. 2015;1:31-6.

Meegan JM, Khalil GM, Hoogstraal H, Adham FK. Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. The American journal of tropical medicine and hygiene. 1980;29(6):1405-10.

Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. Journal of medical entomology. 2008;45(1):125-8.

Turell MJ. Members of the Culex pipiens Complex as Vectors of Viruses1. Journal of the American Mosquito Control Association. 2012;28(4s):123-6.

Diaz LA, Flores FS, Beranek M, Rivarola ME, Almirón WR, Contigiani MS. Transmission of endemic St Louis encephalitis virus strains by local Culex quinquefasciatus populations in Cordoba, Argentina. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2013;107(5):332-4.

Samy AM, Elaagip AH, Kenawy MA, Ayres CF, Peterson AT, Soliman DE. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PloS one. 2016;11(10):e0163863.

Bakhshi H, Mousson L, Vazeille M, Zakeri S, Raz A, de Lamballerie X, et al. High Transmission Potential of West Nile Virus Lineage 1 for Cx. pipiens sl of Iran. Viruses. 2020;12(4):397.

Bakhshi H, Beck C, Lecollinet S, Monier M, Mousson L, Zakeri S, et al. Serological evidence of West Nile virus infection among birds and horses in some geographical locations of Iran. Veterinary medicine and science. 2021;7(1):204-9.

Liu Z, Zhou T, Lai Z, Zhang Z, Jia Z, Zhou G, et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes as Zika virus vectors, China. Emerging infectious diseases. 2017;23(7):1085.

Pruck-Ngern M, Pattaradilokrat S, Chumpolbanchorn K, Pimnon S, Narkpinit S, Harnyuttanakorn P, et al. Effects of artesunate treatment on Plasmodium gallinaceum transmission in the vectors Aedes aegypti and Culex quinquefasciatus. Veterinary Parasitology. 2015;207(1-2):161-5.

Nourani L, Zakeri S, Djadid ND. Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas-A review. Infection, Genetics and Evolution. 2020:104244.

EL‐KHOLY S, EL‐HUSSEINY I, Meshrif W, EL‐AZM AA, Salem M. Does the mosquito Culex pipiens represent a potential vector of hepatitis C virus? Medical and veterinary entomology. 2018;32(2):155-61.

Pettersson JH-O, Shi M, Eden J-S, Holmes EC, Hesson JC. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses. 2019;11(11):1033.

Yüksel E, Yıldırım A, İmren M, Canhilal R, Dababat AA. Xenorhabdus and photorhabdus bacteria as potential candidates for the control of Culex pipiens L.(Diptera: Culicidae), the principal vector of west nile virus and lymphatic filariasis. Pathogens. 2023;12(9):1095.

Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. Indian journal of medical research. 2012;135(5):581-98.

Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends in parasitology. 2011;27(11):514-22.

Stancu IG, Prioteasa FL, Tiron GV, Cotar AI, Fălcuță E, Porea D, et al. Distribution of Insecticide Resistance Genetic Markers in the West Nile Virus Vector Culex pipiens from South-Eastern Romania. Insects. 2022;13(11):1062.

Mastrantonio V, Porretta D, Lucchesi V, Güz N, Çağatay NS, Bellini R, et al. Evolution of adaptive variation in the mosquito Culex pipiens: multiple independent origins of insecticide resistance mutations. Insects. 2021;12(8):676.

Wilke ABB, Marrelli MT. Paratransgenesis: a promising new strategy for mosquito vector control. Parasites & vectors. 2015;8(1):1-9.

Djadid ND, Jazayeri H, Raz A, Favia G, Ricci I, Zakeri S. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PloS one. 2011;6(12):e28484.

Koosha M, Vatandoost H, Karimian F, Choubdar N, Abai MR, Oshaghi MA. Effect of serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the fitness of Culex pipiens (Diptera: Culicidae) for paratransgenic and RNAi approaches. Journal of medical entomology. 2019;56(2):553-9.

Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, et al. Microbial symbionts: a resource for the management of insect‐related problems. Microbial Biotechnology. 2012;5(3):307-17.

Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites & vectors. 2013;6(1):1-12.

Guégan M, Zouache K, Démichel C, Minard G, Potier P, Mavingui P, Moro CV. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6(1):1-17.

Gimonneau G, Tchioffo MT, Abate L, Boissière A, Awono-Ambéné PH, Nsango SE, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infection, Genetics and Evolution. 2014;28:715-24.

Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences. 2012;109(22):8618-22.

Pang R, Chen M, Yue L, Xing K, Li T, Kang K, et al. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS genetics. 2018;14(10):e1007725.

Chandel K, Mendki MJ, Parikh RY, Kulkarni G, Tikar SN, Sukumaran D, et al. Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PloS one. 2013;8(11):e80453.

Jing T-Z, Qi F-H, Wang Z-Y. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome. 2020;8(1):1-20.

Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, et al. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. Journal of Experimental Biology. 2017;220(22):4204-12.

Guégan M, Tran Van V, Martin E, Minard G, Tran FH, Fel B, et al. Who is eating fructose within the Aedes albopictus gut microbiota? Environmental microbiology. 2020;22(4):1193-206.

Lee JB, Park K-E, Lee SA, Jang SH, Eo HJ, Am Jang H, et al. Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Developmental & Comparative Immunology. 2017;69:12-22.

Marra A, Hanson M, Kondo S, Erkosar B, Lemaitre B. Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance. MBio. 2021;12(4):10.1128/mbio. 00824-21.

Steven B, Hyde J, LaReau JC, Brackney DE. The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Frontiers in Microbiology. 2021;12:714222.

Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell reports. 2015;10(10):1681-91.

Nourani L, Raz A, Djadid ND. Isolation and identification of microbiota of Culex quinquefasciatus for their application as paratransgenic tools in vector control. Iranian Journal of Microbiology. 2023;15(2).

Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC microbiology. 2009;9(1):96.

Pidiyar V, Kaznowski A, Narayan NB, Patole M, Shouche YS. Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. International Journal of Systematic and Evolutionary Microbiology. 2002;52(5):1723-8.

Pidiyar VJ, Jangid K, Patole MS, Shouche YS. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S ribosomal RNA gene analysis. The American journal of tropical medicine and hygiene. 2004;70(6):597-603.

Chandel K, Parikh RY, Mendki MJ, Shouche YS, Veer V. Isolation and characterization of Vagococcus sp from midgut of Culex quinquefasciatus (Say) mosquito. Journal of Vector Borne Diseases. 2015;52(1):52.

Mancini M, Damiani C, Accoti A, Tallarita M, Nunzi E, Cappelli A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC microbiology. 2018;18(1):1-10.

Juma EO, Allan BF, Kim C-H, Stone C, Dunlap C, Muturi EJ. Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L. Scientific Reports. 2020;10(1):1-12.

Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS pathogens. 2009;5(5):e1000423.

Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332(6031):855-8.

Chandler JA, Liu RM, Bennett SN. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Frontiers in microbiology. 2015;6:185.

Demaio J, Pumpuni CB, Kent M, Beier JC. The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. The American journal of tropical medicine and hygiene. 1996;54(2):219-23.

Juma EO, Kim C-H, Dunlap C, Allan BF, Stone CM. Culex pipiens and Culex restuans egg rafts harbor diverse bacterial communities compared to their midgut tissues. Parasites & Vectors. 2020;13:1-12.

Lv W-X, Cheng P, Lei J-J, Peng H, Zang C-H, Lou Z-W, et al. Interactions between the gut micro-community and transcriptome of Culex pipiens pallens under low-temperature stress. Parasites & Vectors. 2023;16(1):12.

Diaz-Nieto LM, D´ Alessio C, Perotti MA, Beron CM. Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLoS One. 2016;11(4):e0153133.

Wang Y-t, Shen R-x, Xing D, Zhao C-p, Gao H-t, Wu J-h, et al. Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance. Frontiers in microbiology. 2021;12:625539.

De Freece C, Damiani C, Valzano M, D'amelio S, Cappelli A, Ricci I, Favia G. Detection and isolation of the α‐proteobacterium Asaia in Culex mosquitoes. Medical and veterinary entomology. 2014;28(4):438-42.

Adly E, Hegazy AA, Kamal M, Abu-Hussien SH. Midguts of Culex pipiens L.(Diptera: Culicidae) as a potential source of raw milk contamination with pathogens. Scientific Reports. 2022;12(1):13183.

Fouda M, Hassan M, Al-Daly A, Hammad K. Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction. Journal of the Egyptian Society of Parasitology. 2001;31(3):767-80.

Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, et al. Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Frontiers in microbiology. 2017;8:526.

Bergman A, Hesson JC. Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden. Parasites & Vectors. 2021;14(1):428.

Gonçalves GGA, Feitosa APS, Portela-Júnior NC, de Oliveira CMF, de Lima Filho JL, Brayner FA, Alves LC. Use of MALDI-TOF MS to identify the culturable midgut microbiota of laboratory and wild mosquitoes. Acta tropica. 2019;200:105174.

Tandina F, Almeras L, Koné AK, Doumbo OK, Raoult D, Parola P. Use of MALDI-TOF MS and culturomics to identify mosquitoes and their midgut microbiota. Parasites & vectors. 2016;9(1):495.