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Introduction: This study aims to assess the performance of an analytical model 

for tuberculosis transmission using different numerical approaches and to 

compare the effectiveness of these methods in simulating disease behavior under 

various conditions. 

Methods: This paper analyzes the dynamics of tuberculosis using the VSEIT 

epidemiological model and the numerical method NSFD (Non-Standard Finite 

Difference). The VSEIT model describes the community in terms of five key 

populations: vaccinated (V), susceptible (S), exposed (E), infected (I), and treated 

(T). The results demonstrate that the NSFD method is effective in accurately 

capturing the dynamic characteristics of the proposed model and also confirms 

the local and global stability of the disease equilibrium. 

Results: Simulation results demonstrate that the NSFD method is a unique and 

effective approach for controlling and predicting the spread of tuberculosis. This 

comparison underscores the effectiveness of this method compared to traditional 

Euler and fourth-order Runge-Kutta (RK4) methods. 

Conclusion: The importance and effectiveness of the NSFD method in modeling 

the dynamic nature of tuberculosis are highlighted. This study is a valuable 

recommendation for policymakers and public health officials by providing 

concrete insights into the control and prediction of tuberculosis spread, thereby 

enhancing the efficacy of intervention strategies. 

Kewwors: Tuberculosis, Epidemic modeling, Numerical methods, Non-standard 

finite difference (NSFD) and Reproductive model.  
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1. Introduction  

Mycobacterium tuberculosis, a bacterium, is 

the source of the infectious illness known as 

TB. It mostly has an impact on the lungs. 

Additionally, it can spread to different body 

areas, such as the spine and brain. It is 

important to note that indirect touch is another 

way to contract it. Both with an infected person 

as well as by breathing in airborne droplets 

carrying the microbes. When TB patients 

cough, polluted air is discharged into the air 

and disseminated by the germs that cause TB. 

TB is the second-leading cause of death among 

illnesses brought on by a single infectious 

agent. The sickness that is fatal everywhere, 

One of the top 10 killers in the world, TB 

affects 1.8 million lives globally. In 2020, 86% 

of all new TB cases were found in the 30 

nations with the greatest burden of illness. 

According to the World Health Organization 

(WHO), Eight countries, with India leading the 

pack, are responsible for two-thirds of the 

cases, with China, Indonesia, the Philippines, 

Pakistan, Nigeria, Bangladesh, and South 

Africa following (1). This indicates how the 

spread of TB endangers human health and 

impacts social and economic life (2-4). 

Mathematical modeling allows researchers to 

simulate the spread of infectious diseases, 

taking into account various factors such as 

population size, transmission rates, and 

intervention measures (5-7). By analyzing 

these models, policymakers can make 

informed decisions on implementing control 

strategies and interventions to mitigate the 

impact of the epidemic (8). Additionally, 

mathematical modeling also helps in 

predicting future outbreaks and identifying 

areas that require immediate attention and 

resources. The study of mathematical 

modeling of infectious illnesses has gained 

popularity during the 20th century. The older 

works in this area are available in. To control 

TB efforts involves the use of mathematical 

models extensively. Understanding an 

epidemic's dynamics with the use of modeling 

can help contain its spread. Additionally, 

models help with disease control and epidemic 

forecasting (9, 10). Bernoulli made the first 

work on the mathematical modeling of illness 

transmission in 1766 (11). P.D. En'ko is 

recognized for making several significant 

contributions to mathematical epidemiology 

between 1873 and 1894. However, it might be 

stated that Sir Ronald Ross presented the first 

mathematical model of malaria transmission in 

1911. 

This laid the foundation for mathematical 

epidemiology based on compartmental 

models. Compartmental models clearly take 

into account the many stages of illness 

progression and the transitions between them, 

which distinguishes them from other disease 

models. This enables a more thorough 

comprehension of the spread of illnesses and 

the implementation of actions to stop that 

spread (11). Their findings suggest that there is 

a decrease in the prevalence of the virus and a 

reduction in the significance of the smart 

crown infection [12–15]. During COVID-19 

vaccination, the virus's spike proteins attach to 

ACE2 receptors, allowing the RNA to enter 

our cells and create more COVID-19 viruses. 

This process spreads the infection to other cells 

(16).  

The study of epidemiology is important in 

various fields such as engineering, chemistry, 

medicine, economics, and physics (17). 

Various mathematical models have been 

examined, as detailed in (18). These models 

illustrate situations in which variability occurs. 

Although numerical schemes converge, it is 

unclear if they preserve the system's dynamic 

properties (19). To achieve symmetry with the 

continuous model and solve such problems, a 
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stochastic nonstandard finite difference 

method must be constructed (20). There are 

four compartments in the delayed epidemic 

model of diarrhea: susceptible, infective, 

treated, and recovered. The model has a 

saturated incidence rate structured in the 

artificial delay parameter (21). 

The dynamics of tuberculosis morbidity are 

determined by mathematical models of 

epidemiological processes that are taken into 

consideration in the survey. In the early 1960s 

of this century, the first models of tuberculosis 

epidemiology were created and released (22). 

Epidemiologists who love mathematics 

pioneered the study of epidemic transmission 

(23–25). The follow-up will demonstrate that, 

despite these limitations, the fatigue of 

susceptible individuals in the community does 

not always indicate the end of an epidemic 

(26). Mathematical modeling is a crucial tool 

for understanding the spread of diseases and 

developing effective control strategies. Over 

the past few decades, a number of biologists 

and mathematicians have developed various 

epidemic models to study the dynamics of 

tuberculosis in different parts of the world 

(27). Since it was initially believed to have a 

negative effect on those already infected with . 

tuberculosis, the vaccine was limited to 

tuberculin-negative children, as it was not 

expected to be beneficial for them (28). 

The susceptible-exposed- Infected - Recovered 

(SEIR) model, which incorporates the exposed 

group, significantly enhances the SIR model 

(29). The SEIR model was first used by Aron 

and Schwartz (31) to examine the significance 

of seasonality in epidemic transmission. Li et 

al.'s (30) analysis of the SEIR model's global 

dynamics with a changing population size. An 

SEIR model was created by Newton and Reiter 

(26) to study dengue fever's behavior. SEIR 

models were then utilized in the research on 

TB. Compartmental models used in 

epidemiology may be generally divided into 

two groups: models employing differential 

equations to describe the dynamics of 

infectious illness functions that are continuous 

and may record the ongoing changes in state 

variables across Systems of ordinary 

differential equations and difference equations 

are commonly used to depict time. Models of 

equations are frequently employed when facts 

are accumulated at discrete time intervals or 

when a discrete technique is superior at 

capturing population dynamics (33). 

The relevance of vaccination for TB 

mathematical modeling depends on making 

forecasts about curing the illness. Numerous 

earlier investigations are included. With regard 

to this subject, the objective of (9) was to 

ascertain the dynamics of TB. A mathematical 

formula was created by Egonmwan et al. in a 

framework that includes vaccination of infants 

and elderly vulnerable individuals in the 

dynamics of TB transmission in a community 

in an effort to safeguard people of all ages who 

are vulnerable (10). Models for the distribution 

of economic resources were developed by 

Revelle et al. (11). Some measures were used 

to combat TB. 

To better understand the dynamics of the TB 

infection, we suggest a VSEIT 

epidemiological model in this work. We 

computed the parameters of the biological 

model to validate its performance. nursing 

particular TB data, such as illness prevalence, 

incidence, and other pertinent data on 

epidemiology from 1990 to 2020 taken from 

the WHO Global TB Report (1). The author of 

the research paper used different 

methodologies, such as Euler, RK-4, and a 

discrete NSFD system. The NSFD method was 

specifically designed to investigate aspects 

related to biological sustainability and other 

model characteristics. The goal was to use 

strategies like Euler, RK-4, and the advanced 
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NSFD to control the spread of TB and assess 

potential public health risks. Notably, the 

NSFD approach was effective across various 

step sizes, producing positive outcomes. 

Additionally, the study examined the local and 

global stability of disease-free equilibria 

within the NSFD framework. These equilibria 

were found to be suitable and unconditionally 

stable for the continuous model, and a 

comparison revealed their precision and 

efficacy. 

This paper is structured as follows: In Section 

2, we introduce the TB scourge model and 

make sense of its related boundaries. Section 3 

outlines the current equilibrium and 

reproduction numbers for the deterministic 

model. Section 4 discusses the local and global 

stability of disease-free for the continuous 

model, utilizing the generation number. In 

Section 5, we develop the Euler, RK-4, and 

discrete NSFD schemes to examine the 

convergence and divergence of disease-free 

states for the proposed model. Our 

computations demonstrate that the NSFD 

scheme is an effective and robust method, 

providing a clear representation of the 

continuous model. Mathematical simulations 

are also included to reinforce our theoretical 

results. Finally, the last section presents a brief 

conclusion. 

2. Various basic mechanisms 

characteristically type of a mathematical 

model 

In this paper, we analyze the dynamics of 

tuberculosis (TB) disease using a VSEIT 

epidemiological model. To classify the entire 

population, five classes are used, i.e., 

vaccinated persons, susceptible persons, 

exposed persons, infected persons, and treated 

persons. 

dV

dt
= 𝑞𝑣 − (𝑚 + 𝜂)𝑉(𝑡)

dS

dt
= (1 − 𝑞)𝑣 + 𝑚𝑉(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) − 𝜂𝑆(𝑡)

dE

dt
= 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜓 + 𝜂)𝐸(𝑡) + (1 − 𝛾)𝑑𝑇(𝑡)

dI

dt
= 𝜓𝐸(𝑡) + 𝛾𝑑𝑇(𝑡) − (𝜃 + 𝜂 + ∇)I(t)

dT

dt
= 𝜃𝐼(𝑡) − (𝜂 + 𝑑 + 𝜙)𝑇(𝑡).

 (1) 

Here 𝑉(𝑡) ≥ 0, 𝑆(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 

and 𝑇(𝑡) ≥ 0 with 𝑁 ≥ 0. 

Figure 1. shows the model flowchart and Table 

1. lists the variables and parameters. 

3. Equilibrium and reproduction number 

(𝑹𝟎) 

3.1. Equilibria of model 

The TB-free (TFE) point is get by putting the 

equations (1) of given model is equal to zero. 

The system give us, 𝐸0 = (𝑉0, 𝑆0, 𝐸0, 𝐼0, 𝑇0) 

for model (1), then it is easy to search out the 

TFE 𝐸0 = (
𝑞𝑣

(𝑚+𝜂)
,
(1−𝑞)𝑣

𝜂
, 0,0,0).  

The given model (1) is all together the state 

variables were resolved 𝑉, 𝑆, 𝐸, 𝐼, and 𝑇 to find 

the TB endemic equilibrium (TEE) point.  

If the TEE point is represented by 

𝐸∗(𝑉∗, 𝑆∗, 𝐸∗, 𝐼∗, 𝑇∗), then model (1) yields 

 
𝑞𝑣

(𝑚+𝜂)
= 𝑉∗, 𝑆∗ =

((1−𝑞)𝑣+𝑚𝑉∗(𝑡))

(𝜂+𝛽𝐼∗(𝑡))
, 𝐸∗ =

(𝛽𝑆∗(𝑡)𝐼∗(𝑡)+(1−𝛾)𝑑𝑇∗(𝑡))

(𝜓+𝜂)
, 𝐼∗ =

(𝜓𝐸∗(𝑡)+𝛾𝑑𝑇∗(𝑡))

(𝜃+𝜂+∇)
, 

and 𝑇∗ =
𝜃𝐼∗(𝑡)

(𝜂+𝑑+𝜙)
. 
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Figure 1. Flowchart of  VSEIT model. 

Variable Description 

𝑽(𝒕) The vaccinated population at time t. 

𝑺(𝒕) The susceptible population which is able to be infected at any time t. 

𝑬(𝒕) The exposed population, which is not yet infectious. 

𝑰(𝒕) The infected population at time t. 

𝑻(𝒕) The treated population at time t. 

𝑞 Vaccination rate 

𝑣 Recruitment rate 

𝑚 Rate of moving from V to S 

𝜂 Natural death rate 

𝛽 Transmission rate 

𝜓 Progression rate 

𝛾 Treatment rate 

𝜃 Treatment failure rate 

∇ Disease death rate in I 

𝑑 Disease death rate in T 

Table 1.  Description of variable of the model (1).

 

 

 

 

3.2. Basic reproduction number (𝑹𝟎) 
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The reproduction number, an approximation 

provided by epidemiological research, can be 

used to estimate secondary infections, even if 

it is difficult to do so accurately (45). We make 

use of the matrices for translation and 

transmission, respectively, to calculate. The 

translation and transmission matrices are, 

respectively, determined. 

𝐹(𝑥) = [
𝛽𝑆(𝑡)𝐼(𝑡)

0
0

], and 𝑉(𝑥) = [

(𝜓 + 𝜂)𝐸(𝑡) − (1 − 𝛾)𝑑𝑇(𝑡)

−𝜓𝐸(𝑡) − 𝛾𝑑𝑇(𝑡) + (𝜃 + 𝜂 + ∇)𝐼(𝑡)
−𝜃𝐼(𝑡) + (𝜂 + 𝑑 + 𝜙)𝑇(𝑡)

]. 

As 𝑅0 = 𝜌(𝐹𝑉−1), therefore simple calculation employs 

𝑅0 =
𝜓(𝜃 + 𝜂 + ∇q)𝛽𝑣𝑝3

𝜂(𝑚 + 𝜂)((𝑝1𝑝2𝑝3 − 𝜓𝛾𝑑𝑝1 − (1 − 𝛾)𝜓𝛾𝑑))
 

4. Euler scheme 

For model (1), Euler scheme can be created as shown below. 

𝑆𝑛+1 = 𝑆𝑛 + Φ((1 − 𝑞)𝑣 + 𝑚𝑉𝑛(𝑡) − 𝛽𝑆𝑛(𝑡)𝐼𝑛(𝑡) − 𝜂𝑆𝑛(𝑡)) 

Similarly, 

𝑉𝑛+1 = 𝑉𝑛 + Φ(𝑞𝑣 − (𝑚 + 𝜂)𝑉𝑛(𝑡)) 

and 

𝐸𝑛+1 = 𝐶𝑛 + Φ(𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (𝜓 + 𝜂)𝐸𝑛+1(𝑡) + (1 − 𝛾)𝑑𝑇𝑛(𝑡)) 

and 

𝐼𝑛+1 = 𝐼𝑛 + Φ(𝜓𝐸𝑛+1(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 + ∇)I𝑛+1(t))

𝑇𝑛+1 = 𝑇𝑛 + Φ(𝜃𝐼𝑛+1(𝑡) − (𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡))
 

4.1 The RK-4 Scheme 

The RK-4 scheme is a common method that we use, especially when we don't have other instructions. To 

create the Rk-4scheme for system (1), we do this 𝑆 = 𝐾, 𝑉 = 𝐿, 𝐸 = 𝑀, 𝐼 = 𝑁 and 𝑇 = 𝑃, then 

Stage 1 

𝐾1 = Φ((1 − 𝑞)𝑣 + 𝑚𝑉𝑛(𝑡) − 𝛽𝑆𝑛(𝑡)𝐼𝑛(𝑡) − 𝜂𝑆𝑛(𝑡))

𝐿1 = Φ(𝑞𝑣 − (𝑚 + 𝜂)𝑉𝑛(𝑡))

𝑀1 = Φ(𝛽𝑆𝑛(𝑡)𝐼𝑛(𝑡) − (𝜓 + 𝜂)𝐸𝑛(𝑡) + (1 − 𝛾)𝑑𝑇𝑛(𝑡))

𝑁1 = Φ(𝜓𝐸𝑛(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 + ∇)I𝑛(t))

 

𝑃1 = Φ(𝜃𝐼𝑛(𝑡) − (𝜂 + 𝑑 + 𝜙)𝑇𝑛(𝑡)) 
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Figure 2. Numerical simulation for model by using Euler scheme (1) 

In Figure 2, by using the Euler scheme with (a) 0.01 and (b). (a-c) Stable CFE point; other parameters remain 

fixed. Figure 2. (a, c) When used for calculations, Euler's TFE method produces accurate results. We saw in 

the picture Fig. 1.2  (d) that the TFE point becomes less steady (less powerful) as we take larger steps. Thus, 

we can conclude that when using really large steps, the Euler technique does not maintain a positive and stable 

situation. 

Stage 3 

𝐾3 = Φ((1 − 𝑞)𝑣 + 𝑚 (𝑉𝑛(𝑡) +
𝐿2

2
) − 𝛽 (𝑆𝑛(𝑡) +

𝐾2

2
) (𝐼𝑛(𝑡) +

𝑁2

2
) − 𝜂 (𝑆𝑛(𝑡) +

𝐾2

2
))

L3 = Φ (𝑞𝑣 − (𝑚 + 𝜂) (𝑉𝑛(𝑡) +
𝐿2

2
))

M3 = Φ (𝛽 (𝑆𝑛(𝑡) +
𝐾2

2
) (𝐼𝑛(𝑡) +

𝐿2

2
) − (𝜓 + 𝜂) (𝐸𝑛+1(𝑡) +

𝑀2

2
) + (1 − 𝛾)𝑑 (𝑇𝑛(𝑡) +

𝑃2

2
)

 

𝑁3 = Φ(𝜓(𝐸𝑛(𝑡) +
𝑀2

2
) + 𝛾𝑑 (𝑇𝑛(𝑡) +

𝑃2

2
) − (𝜃 + 𝜂 + ∇) (I𝑛(t) +

𝑁2

2
))

𝑃3 = Φ (𝜃 (𝐼𝑛(𝑡) +
𝑁2

2
) − (𝜂 + 𝑑 + 𝜙) (𝑇𝑛(𝑡) +

𝑃2

2
)) .
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Stage 4 

𝐾4 = Φ((1 − 𝑞)𝑣 + 𝑚(𝑉𝑛(𝑡) + 𝐿3) − 𝛽(𝑆𝑛(𝑡) + 𝐾3)(𝐼𝑛(𝑡) + 𝑁3) − 𝜂(𝑆𝑛(𝑡) + 𝐾3))

L4 = Φ(𝑞𝑣 − (𝑚 + 𝜂)(𝑉𝑛(𝑡) + 𝐿3))

𝑀4 = Φ(𝛽(𝑆𝑛(𝑡) + 𝐾3)(𝐼𝑛(𝑡) + 𝐿3) − (𝜓 + 𝜂)(𝐸𝑛+1(𝑡) + 𝑀3) + (1 − 𝛾)𝑑(𝑇𝑛(𝑡) + 𝑃4 )

 

𝑁4 = Φ(𝜓(𝐸𝑛(𝑡) + 𝑀3) + 𝛾𝑑(𝑇𝑛(𝑡) + 𝑃3) − (𝜃 + 𝜂 + ∇)(I𝑛(t) + 𝑁3)) 

𝑃4 = Φ(𝜃(𝐼𝑛(𝑡) + 𝑁3) − (𝜂 + 𝑑 + 𝜙)(𝑇𝑛(𝑡) + 𝑃3)) 

The final stage is 

Δ𝑦1 =
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)

Δ𝑦2 =
1

6
(𝐿1 + 2𝐿2 + 2𝐿3 + 𝐿4)

Δ𝑦3 =
1

6
(𝑀1 + 2𝑀2 + 2𝑀3 + 𝑀4)

Δ𝑦4 =
1

6
(𝑁1 + 2𝑁2 + 2𝑁3 + 𝑁4),

Δ𝑦5 =
1

6
(𝑃1 + 2𝑃2 + 2𝑃3 + 𝑃4),

 

Where Δ𝑦1, Δ𝑦2, Δ𝑦3 and Δ𝑦4 are the subjective of 𝑘i, 𝐿𝑖 , 𝑃𝑖 𝑎𝑛𝑑 𝑁𝑖  where 𝑖 = {1,2,3,4}. 

Now, 

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑦 

We get 

𝑆𝑛+1 = 𝑆𝑛 +
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)

𝑉𝑛+1 = 𝑉𝑛 +
1

6
(𝐿1 + 2𝐿2 + 2𝐿3 + 𝐿4)

𝐸𝑛+1 = 𝐸𝑚 +
1

6
(𝑀1 + 2𝑀2 + 2𝑀3 + 𝑀4)

𝐼𝑛+1 = 𝐼𝑛 +
1

6
(𝑁1 + 2𝑁2 + 2𝑁3 + 𝑁4)

𝑇𝑛+1 = 𝑇𝑛 +
1

6
(𝑃1 + 2𝑃2 + 2𝑃3 + 𝑃4)
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Figure 3. Numerical simulation for model (1) by using RK4- scheme 

In Figure 3. with subfigures: (a) ℎ = 0.01, ( b) ℎ = 0.1, (𝑐)ℎ = 1, (𝑑)ℎ = 1.5. (a-c) Stable TFE point with 

𝑣 = 0.00498 𝑞 = 0.977,𝑚 = 811085, 𝜂 = 0.25;other parameters remain fixed 𝛽 = 6.6752 ∗ 10−11, 𝜓 =

0.0656, 𝛾 = 0.1095, 𝜃 = 0.1325, ∇= 1.0043, 𝜙 = 0.002981, ℰ = 2.0136, 𝑑 = 4.42327 ∗ 10−6, 𝜓 =

0.0656, 𝛾 = 0.1095, 𝑑 = 4.42327 ∗ 10−6 When we utilize the RK-4 scheme for TFE, we observe favorable 

outcomes in Fig. 1.3 (a-c). But when we take large steps, it becomes less stable, as seen in Fig. 1.3 (d). 

Therefore, we draw the conclusion that the RK-4 strategy is ineffective for any step size. 

4.2 Construction of NSFD scheme 

The numerical estimates of 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑇(𝑡) at 𝑡 = 𝑛ℎ for model (1) are denoted as 

𝑆𝑛, 𝑉𝑛 , 𝐸𝑛, 𝐼𝑛, 𝑇𝑛, the nonnegative integer ' 𝑛 ' represents the time for each step (46,47), and can be written 

based on model (1). 

s𝑛+1 − 𝑆𝑛

Φ
= (1 − 𝑞)𝑣 + 𝑚𝑉𝑛+1(𝑡) − 𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − 𝜂𝑆𝑛+1(𝑡)

v𝑛+1 − 𝑉𝑛
Φ

= 𝑞𝑣 − (𝑚 + 𝜂)𝑉𝑛+1(𝑡)

 

(𝐸𝑛+1 − 𝐸𝑛)

Φ
= 𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (𝜓 + 𝜂)𝐸𝑛+1(𝑡) + (1 − 𝛾)𝑑𝑇𝑛(𝑡)

𝐼𝑛+1 − 𝐼𝑛
Φ

= 𝜓𝐸𝑛+1(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 + ∇)I𝑛+1(t))                          (2)

 

𝑇𝑛+1 − 𝑇𝑛

Φ
= 𝜃𝐼𝑛+1(𝑡) − (𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡 

 

 

After rearrange the above terms 



66 Movaheedi Z.  /  Afghanistanjournal of infectious diseases  (2024), Vol. 2, No.2. 57-76  

 

𝑆𝑛+1(𝑡) =
Φ(1 − 𝑞)𝑣 + Φ𝑚𝑉𝑛+1(𝑡)

(1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ)

𝑉𝑛+1(𝑡) =
Φ𝑞𝑣 + 𝑉𝑛

(1 + Φ(𝑚 + 𝜂))

𝐸𝑛+1(𝑡) =
(Φ𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) + Φ(1 − 𝛾)𝑑𝑇𝑛(𝑡) + 𝐸𝑛)

(1 + Φ(𝜓 + 𝜂))

I𝑛+1(t) =
Φ𝜓𝐸𝑛+1(𝑡) + Φ𝛾𝑑𝑇𝑛(𝑡) + 𝐼𝑛

(+Φ(𝜃 + 𝜂 + ∇))
                        (3)

𝑇𝑛+1(𝑡) =
Φ𝜃𝐼𝑛+1(𝑡) + 𝑇𝑛

(1 + Φ(𝜂 + 𝑑 + 𝜙))

 

4.3 Positivity and boundedness of NSFD scheme 

Suppose the initial values of discrete scheme (3) are non-negative, i.e. 𝑆0 ≥ 0, 𝑉0 ≥ 0, 𝐸0 ≥ 0, 𝐼0 ≥

0, 𝑇0 ≥ 0. As of the expectations, the expected values for these variables are also non-negative.: 𝑆𝑛 ≥

0, 𝐸𝑛 ≥ 0, 𝐼𝑛 ≥ 0, 𝑉𝑛 ≥ 0, 𝑇𝑛 ≥ 0. Thus, solutions of NSFD scheme (3) indicate the positivity of 

scheme (3), i.e. 𝑆𝑛+1 ≥ 0, 𝐸𝑛+1 ≥ 0, 𝐼𝑛+1 ≥ 0, 𝑉𝑛+1 ≥ 0, 𝑇𝑛+1 ≥ 0. In order to discuss the 

boundedness of solutions of the NSFD system (4), we consider 𝑃𝑛 = 𝑆𝑛 + +𝑉𝑛 + 𝐸𝑛 + 𝐼𝑛 + 𝑇𝑛. Then 

𝑊𝑛+1 − 𝑊𝑛

Φ
= 𝑣 − 𝜂𝑊𝑛+1 

i.e. 

(1 + 𝜓𝜂)𝑊𝑛+1 = Φ𝑣 + 𝑊𝑛 

Therefore, we get 

𝑊𝑛+1 ≤
Φ𝑣

((1 + Φ𝜂))
+

𝑊𝑛

((1 + Φ𝜂))
⇔ Φ𝑣 ∑  

𝑚

𝑘+1

(
1

((1 + Φ𝜂)
)
𝑘

+ 𝑊0 (
1

(1 + Φ𝜂)
)
𝑚

 

If 0 < 𝑊(0) <
𝑣

𝜂
, then by using Gronwall's inequality, we find 

𝑊𝑛 ≤
𝑣

𝜂
(1 −

1

(1+Φ𝜂)𝑛
) + 𝑊0 (

1

1+Φ𝜂
)
𝑚

=
𝑣

𝜂
+ (𝑊0 −

𝑣

𝜂
) (

1

1+Φ𝜂
)
𝑚

              (4) 

Since (
1

1+Φ𝜂
)
𝑚

< 1, so we obtain 𝑊𝑛 →
𝜋

𝑣
 as 𝑚 → ∞. This shows that the solutions of the system (4) 

are bounded and the feasible region becomes 

𝐵 = {(𝑉𝑛 + 𝑆𝑛 + 𝐸𝑛 + 𝐼𝑛 + 𝑇𝑛): 0 ≤ 𝑉𝑛 + 𝑆𝑛 + 𝐸𝑛 + 𝐼𝑛 + 𝑇𝑛 ≤
𝑣

𝜂
}.             (5) 

4.4 Local stability of equilibria 

In order to demonstrate that the TFE point is locally asymptotically stable (LAS), we will apply the 

Schur-Cohn criterion (48,49) as definite in the following Lemma 1. 

Lemma 1. The roots of M2 − 𝑄M + 𝐿 = 0  guarantee |M𝑘| < 1  for 𝑘 = 1,2 , ⇔  the following 

requirements are satisfied. 
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1. 𝐿 < 1, 

2. 1 + 𝑄 + 𝐿 > 0, 

3. 1 − 𝑄 + 𝐿 > 0, 

where 𝑄 described trace and 𝐿 mentioned determinant of the Jacobian matrix. 

Theorem 1 if Φ > 0, the TFE is LAS for NSFD model (4) when 𝑅0 < 1. 

Proof The Jacobian matrix can be expressed as the following using the data presented above 

𝐽(𝑆, 𝑉, 𝐸, 𝐼, 𝑇) =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑀1

𝜕𝑆

𝜕𝑀1

𝜕𝑉

𝜕𝑀1

𝜕𝐸

𝜕𝑀1

𝜕𝐼

𝜕𝑀1

𝜕𝑇
𝜕𝑀2

𝜕𝑆

𝜕𝑀2

𝜕𝑉

𝜕𝑀2

𝜕𝐸

𝜕𝑀2

𝜕𝐼

𝜕𝑀2

𝜕𝑇
𝜕𝑀3

𝜕𝑆

𝜕𝑀3

𝜕𝑉

𝜕𝑀3

𝜕𝐸

𝜕𝑀3

𝜕𝐼

𝜕𝑀3

𝜕𝑇
𝜕𝑀4

𝜕𝑆

𝜕𝑀4

𝜕𝑉

𝜕𝑀4

𝜕𝐸

𝜕𝑀4

𝜕𝐼

𝜕𝑀4

𝜕𝑇
𝜕𝑀5

𝜕𝑆

𝜕𝑀5

𝜕𝑉

𝜕𝑀5

𝜕𝐸

𝜕𝑀5

𝜕𝐼

𝜕𝑀5

𝜕𝑇 ]
 
 
 
 
 
 
 
 
 
 

,            (6) 

where 𝑀1, 𝑀2, 𝑀3, 𝑀4 and 𝑀5 are provided in (5) a list of derivatives that can be found in (6) is as 

follows. 

∂𝑀1

∂𝑆
=

1

(1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ)′ ,
∂𝑀1

∂𝑉
=

−Φ𝑚

((1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ))
2 ,

∂𝑀1

∂𝐸
= 0,

∂𝑀1

∂𝐼
=

−1

((1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ))
2 ,

∂𝑀1

∂𝑇
=

0,
∂𝑀2

∂𝑆
= 0 

∂𝑀2

∂𝐸
= 0 

∂𝑀2

∂𝐼
= 0 

∂𝑀2

∂𝑉
=

1

(1 + Φ(𝑚 + 𝜂))
 
∂𝑀2

∂𝑇
= 0,

∂𝑀3

∂𝑆
=

Φ𝛽𝐼𝑛(𝑡)

(1 + Φ(𝜓 + 𝜂))
 
∂𝑀3

∂𝐸
=

1

(1 + Φ(𝜓 + 𝜂))
 
∂𝑀3

∂𝑉
= 0 

∂𝑀3

∂𝐼
=

Φ𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡)

(1 + Φ(𝜓 + 𝜂))
 
∂𝑀3

∂𝑇
=

Φ(1 − 𝛾)𝑑

(1 + Φ(𝜓 + 𝜂))
 ,
∂𝑀4

∂𝑆
= 0,

∂𝑀4

∂𝐸
=

Φ𝜓

(+Φ(𝜃 + 𝜂 + ∇))
,
∂𝑀4

∂𝑉
= 0,

∂𝑀4

∂𝐼
=

1

(+Φ(𝜃 + 𝜂 + ∇))
,
∂𝑀4

∂𝑇
=

Φ𝛾𝑑

(+Φ(𝜃 + 𝜂 + ∇))′

∂𝑀5

∂𝑆
= 0,

∂𝑀5

∂𝑉
= 0,

∂𝑀5

∂𝐸
=

0,
∂𝑀5

∂𝐼
=

Φ𝜃

(1 + Φ(𝜂 + 𝑑 + 𝜙))
,
∂𝑀5

∂𝑇
=

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))′  

 

 

 

 

 

 

Placing all the above derivatives in (6), we get 



68 Movaheedi Z.  /  Afghanistanjournal of infectious diseases  (2024), Vol. 2, No.2. 57-76  

 

J

=

[
 
 
 
 
 
 
 
 
 
 
 

1

(1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ)

−Φ𝑚

((1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ))
2 0

−1

((1 + Φ𝛽𝐼𝑛(𝑡) + 𝜂Φ))
2 0

0
1

(1 + Φ(𝑚 + 𝜂))
0 0 0

Φ𝛽𝐼𝑛(𝑡)

(1 + Φ(𝜓 + 𝜂))
0

1

(1 + Φ(𝜓 + 𝜂))
0 0

0 0
Φ𝜓

(+Φ(𝜃 + 𝜂 + ∇))

1

(+Φ(𝜃 + 𝜂 + ∇))

Φ𝛾𝑑

(+Φ(𝜃 + 𝜂 + ∇))

0 0 0
Φ𝜃

(1 + Φ(𝜂 + d + 𝜙))

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))]
 
 
 
 
 
 
 
 
 
 
 

.           (7) 

At CFE point 𝐸0 = (
𝑞𝑣

(𝑚+𝜂)
,
(1−𝑞)𝑣

𝜂
, 0,0,0), the matrix (7) becomes 

𝐽(𝐸0)

=

[
 
 
 
 
 
 
 
 
 
 
 

1

(1 + 𝜂Φ)

−Φ𝑚

((1 + 𝜂Φ))2
0

−1

((1 + 𝜂Φ))2
0

0
1

(1 + Φ(𝑚 + 𝜂))
0 0 0

0 0
1

(1 + Φ(𝜓 + 𝜂))
0 0

0 0
Φ𝜓

(+Φ(𝜃 + 𝜂 + ∇))

1

(+Φ(𝜃 + 𝜂 + ∇))

Φ𝛾𝑑

(+Φ(𝜃 + 𝜂 + ∇))

0 0 0
Φ𝜃

(1 + Φ(𝜂 + d + 𝜙))

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))]
 
 
 
 
 
 
 
 
 
 
 

. 

In demand to describe the eigenvalues, we adopt 

|𝐽(𝐸0) − 𝐼| = 0, 

i.e. 

[
 
 
 
 
 
 
 
 

1

(1+𝜂Φ)
− Λ

−Φ𝑚

((1+𝜂Φ))2
0

−1

((1+𝜂Φ))2
0

0
1

(1+Φ(𝑚+𝜂))
− Λ 0 0 0

0 0
1

(1+Φ(𝜓+𝜂))
− Λ 0 0

0 0
Φ𝜓

(+Φ(𝜃+𝜂+∇))

1

(+Φ(𝜃+𝜂+∇))
− Λ

Φ𝛾𝑑

(+Φ(𝜃+𝜂+∇))

0 0 0
Φ𝜃

(1+Φ(𝜂+𝑑+𝜙))

1

(1+Φ(𝜂+𝑑+𝜙))
− Λ]

 
 
 
 
 
 
 
 

= 0        (8) 

 

 

 

Simple calculations, (8) yields 
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(
1

(1+𝜂Φ)
− Λ1) (

1

(1+Φ(𝑚+𝜂))
− Λ2) (

1

(1+Φ(𝜓+𝜂))
− Λ3) |

1

(+Φ(𝜃+𝜂+∇))
− Λ

Φ𝛾𝑑

(+Φ(𝜃+𝜂+∇))

Φ𝜃

(1+Φ(𝜂+d+𝜙))

1

(1+Φ(𝜂+𝑑+𝜙))
− Λ

| = 0       

(9) 

The equation (9) provides Λ1 =
1

(1+𝜂Φ)
< 1, Λ2 =

1

(1+Φ(𝑚+𝜂))
< 1 and Λ3 =

1

(1+Φ(𝜓+𝜂))
< 1. 

To find other eigenvalues, we take 

||

1

(+Φ(𝜃 + 𝜂 + ∇))
− Λ

Φ𝛾𝑑

(+Φ(𝜃 + 𝜂 + ∇))
Φ𝜃

(1 + Φ(𝜂 + d + 𝜙))

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))
− Λ

|| = 0 

i.e. 

𝑇2 − 𝑇 (
1

(+Φ(𝜃 + 𝜂 + ∇))
+

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))
) +

Φ𝜃

(1 + Φ(𝜂 + d + 𝜙))

Φ𝛾𝑑

(+Φ(𝜃 + 𝜂 + ∇))
−

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))

1

(+Φ(𝜃 + 𝜂 + ∇))
= 0.      (10) 

1. 𝐿 < 1, 

2. 1 + 𝑄 + 𝐿 > 0, 

3. 1 − 𝑄 + 𝐿 > 0, 

Comparing equation (10) with 𝑇2 − 𝑄𝑇 + 𝐿 = 0, we get 𝑄 = (
1

(+Φ(𝜃+𝜂+∇))
+ 

1

(1+Φ(𝜂+𝑑+𝜙))
) and 𝐿 =

Φ𝜃

(1+Φ(𝜂+d+𝜙))

Φ𝛾𝑑

(+Φ(𝜃+𝜂+∇))
−

1

(1+Φ(𝜂+𝑑+𝜙))

1

(+Φ(𝜃+𝜂+∇))
. If 𝑅0 < 1, 

1. 𝐿 =
Φ𝜃

(1+Φ(𝜂+d+𝜙))

Φ𝛾𝑑

(+Φ(𝜃+𝜂+∇))
−

1

(1+Φ(𝜂+𝑑+𝜙))

1

(+Φ(𝜃+𝜂+∇))
< 1. 

2. 1 + 𝐷 + 𝐸 = 1 +
1

(+Φ(𝜃+𝜂+∇))
+

1

(1+Φ(𝜂+𝑑+𝜙))
+

Φ𝜃

(1+Φ(𝜂+d+𝜙))

Φ𝛾𝑑

(+Φ(𝜃+𝜂+∇))
− 

1

(1 + Φ(𝜂 + 𝑑 + 𝜙))

1

(+Φ(𝜃 + 𝜂 + ∇))
> 0 

3. 1 − 𝐷 + 𝐸 = 1 −
1

(+Φ(𝜃+𝜂+∇))
+

1

(1+Φ(𝜂+𝑑+𝜙))
+

Φ𝜃

(1+Φ(𝜂+d+𝜙))

Φ𝛾𝑑

(+Φ(𝜃+𝜂+∇))
− 

1

(1+Φ(𝜂+𝑑+𝜙))

1

(+Φ(𝜃+𝜂+∇))
> 0. 

4. In (2) when we put the numerical values of all positive parameter its gives us greater value of 

zero. So we can say that the point (2) is greater than zero. 
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Figure 4. Numerical simulation for model (1) by using NSFD scheme. 

In Figure 4, we can see the numerical simulation for model (1) by using the NSFD scheme with (a). 

(a-c) Stable CFE point with other parameters remaining fixed When we use the NSFD scheme for 

TFE, we see the results in Fig. 1.4 (a–d). However, if we take huge steps, it always shows stability 

for all steps. So, we can say that the NSFD scheme is in place for all steps that we take. 

4.5 Global stability of equilibria 

To find the global stability of TFE points for NSFD scheme (4), we describe the function 𝑀(𝑥) ≥ 0 such that 

𝐽(𝑥) = 𝑦 − ln 𝑦 − 1 and, so ln 𝑦 ≤ 𝑦 − 1. 

Theorem 3 For all 𝜓 > 0, the CFE point is GAS for NSFD model (4) whenever 𝑅0 ≤ 1. 

Proof  Create a discrete Lyapunov function 

𝑈𝑛(𝑆𝑛, 𝑉𝑛 , 𝐸𝑛, 𝐼𝑛, 𝑇𝑛) = 𝑆0𝑀 (
𝑆𝑛

𝑆0) + 𝜙1𝑉𝑛 + 𝜙2𝐸𝑛 + 𝜙3𝐼𝑛 + 𝜙4𝑇𝑛 

where 𝜙𝑘 > 0 for all 𝑗 = 1,2,3,4. Hence, 𝑋𝑛 > 0 for all 𝑆𝑛 > 0, 𝐸𝑛 > 0, 𝐼𝑛 > 0, 𝐻𝑛 > 0, and 𝑅𝑛 > 0. In 

addition, 𝑋𝑛 = 0, if and only if 𝑆𝑛 = 𝑆0, 𝑉𝑛 = 𝑉0, 𝐸𝑛 = 𝐸0, 𝐼𝑛 = 𝐼0, and 𝑇𝑛 = 

𝑇0. We take 

i.e. 
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Δ𝑈𝑛 = 𝑆0𝐹 (
𝑆𝑛+1

𝑆0 ) + 𝜙1𝑉𝑛+1 + 𝜙2𝐸𝑛+1 + 𝜙3𝐼𝑛+1 + 𝜙4𝑇𝑛+1 − (𝑆0𝐹 (
𝑆𝑛

𝑆0) + 𝜙1𝑉𝑛 +

𝜙3𝐸𝑛 + 𝐼𝑛 + 𝜙3𝑇𝑛).

 = 𝑆0 (
𝑆𝑛+1

𝑆0 −
𝑆𝑛

𝑆0 + ln 
𝑆𝑛

𝑆𝑛+1
) + 𝜙1(𝑉𝑛+1 − 𝑉𝑛) + 𝜙2(𝐸𝑛+1 − 𝐸𝑛) + 𝜙3(𝐼𝑛+1 − 𝐼𝑛) +

 𝜙4(𝑇𝑛+1 − 𝑇𝑛).                 (11) 

 

Using the inequality ln 𝑦 ≤ 𝑦 − 1, (11) becomes 

Δ𝑈𝑛 ≤ 𝑆𝑛+1 − 𝑆𝑛 + 𝑆0 (−1 +
𝑆𝑛

𝑆𝑛+1
) + (−1 +

𝑉𝑛

𝑉𝑛+1
)𝜑1(𝑉𝑛+1 − 𝑉𝑛) + (−1 +

𝐸𝑛

𝐸𝑛+1
)𝜑2(𝐸𝑛+1 −  𝐸𝑛) +

(−1 +
𝐼𝑛

𝐼𝑛+1
)𝜑3(𝐼𝑛+1 − 𝐼𝑛) + (−1 +

𝑇𝑛

𝑇𝑛+1
)𝜑4(𝑇𝑛+1 − 𝑇𝑛 ). 

= − (1 −
𝑆0

𝑆𝑛+1
) (𝑆𝑛+1 − 𝑆𝑛) − (1 −

𝑉𝑛

𝑉𝑛+1
)𝜑1(𝑉𝑛+1 − 𝑉𝑛) − (1 −

𝐸𝑛

𝐸𝑛+1
)𝜑2(𝐸𝑛+1 −𝐸𝑛) −

 (1 −
𝐼𝑛

𝐼𝑛+1
)𝜑3(𝐼𝑛+1 − 𝐼𝑛) − (1 −

𝑇𝑛

𝑇𝑛+1
)𝜑4(𝑇𝑛+1 − 𝑇𝑛).                  (12) 

By utilizing system (3), (12) can be written as 

Δ𝑈𝑛 ≤ −((1 −
𝑆0

𝑆𝑛+1
) ((1 − 𝑞)𝑣 + 𝑚𝑉𝑛+1(𝑡) − 𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − 𝜂𝑆𝑛+1(𝑡)) + (1 −

𝑉𝑛
𝑉𝑛+1

)
 

𝜙1(𝑞𝑣 − (𝑚 + 𝜂)𝑉𝑛+1(𝑡)) + (1 −
𝐸𝑛

𝐸𝑛+1
)𝜙2(𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (𝜓 + 𝜂)𝐸𝑛+1(𝑡) + 

(1 − 𝛾)𝑑𝑇𝑛(𝑡)) + (1 −
𝐼𝑛

𝐼𝑛+1
)𝜙3(𝜓𝐸𝑛+1(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 + ∇)I𝑛+1(t)) + (1 −

𝑇𝑛

𝑇𝑛+1
)𝜙4(𝜃𝐼𝑛+1(𝑡) − (𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡))).          (13)

 

Let 𝜑𝑗  for 𝑗 = 1,2,3,4 be nominated so that 

𝜙1(1 − 𝑞)𝑣 + 𝑚𝑉𝑛+1(𝑡) − 𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − 𝜂𝑆𝑛+1(𝑡) = 𝜙2(𝑞𝑣 − (𝑚 + 𝜂)𝑉𝑛+1(𝑡)),

𝜙3(𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (𝜓 + 𝜂)𝐸𝑛+1(𝑡)) = 𝜙4(𝜓𝐸𝑛+1(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 +

∇)I𝑛+1(t)), (𝜙3(𝜓𝐸𝑛+1(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 + ∇)I𝑛+1(t))) = 𝜙4(𝜃𝐼𝑛+1(𝑡) −

(𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡)).

 

By putting the above values, from (13) we get 

Δ𝑈𝑛 ≤ −((1 −
𝑠0

𝑆𝑛+1
) ((1 − 𝑞)𝑣 + 𝑚𝑉𝑛+1(𝑡) − 𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − 𝜂𝑆𝑛+1(𝑡)) + (1 −

𝑉𝑛
𝑉𝑛+1

) 𝜙1(𝑞𝑣 − (𝑚 + 𝜂)𝑉𝑛+1(𝑡)) + (1 −
𝐸𝑛

𝐸𝑛+1
)𝜙2(𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (𝜓 + 𝜂)𝐸𝑛+1(𝑡)) +

(1 −
𝐼𝑛

𝐼𝑛+1
)𝜙3(𝜓𝐸𝑛+1(𝑡) + 𝛾𝑑𝑇𝑛(𝑡) − (𝜃 + 𝜂 + ∇)I𝑛+1(t)) + (1 −

𝑇𝑛

𝑇𝑛+1
)𝜙4(𝜃𝐼𝑛+1(𝑡) −

(𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡))).

 

Simple calculations yields 
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Δ𝑈𝑛 ≤ −((1 −
𝑆0

𝑆𝑛+1
) (𝑣 − 𝜂𝑆𝑛+1(𝑡) − (1 −

𝑉𝑛
𝑉𝑛+1

)𝜙1(𝑚 + 𝜂)𝑉𝑛+1(𝑡)) + (1 −

𝐸𝑛

𝐸𝑛+1
)𝜙2𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) + 𝜙2𝜓𝐸𝑛+1 + 𝜙3𝜂𝐼𝑛 + (1 −

𝐼𝑛
𝐼𝑛+1

)𝜙3(𝜃 + 𝜂 + ∇)I𝑛+1(t) +

𝜙4𝑣𝐸𝑛 + (1 −
𝑇𝑛

𝑇𝑛+1
) 𝜙4(𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡)) .

 ≤ −((1 −
𝑆0

𝑆𝑛+1
) (𝑣 − −𝜂𝑆𝑛+1(𝑡) − (1 −

𝑉𝑛
𝑉𝑛+1

)𝜙1(𝑚 + 𝜂)𝑉𝑛+1(𝑡) + (1 −

𝐸𝑛

𝐸𝑛+1
)𝜙2𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (1 −

𝐼𝑛
𝐼𝑛+1

) 𝜙4𝑣𝐸𝑛 + (1 −
𝑇𝑛

𝑇𝑛+1
)𝜙4(𝜂 + 𝑑 + 𝜙)𝑇𝑛+1(𝑡))).           (14)

 

As 𝑆0 =
𝑞𝑣

(𝑚+𝜂)
 which implies 𝑆0𝑞(𝑚 + 𝜂) = 𝑣. By substituting 𝜋 in (14), we obtain 

Δ𝑋𝑛 ≤ − (1 −
𝑆0

𝑆𝑛+1
) (𝑆0𝑞(𝑚 + 𝜂) − 𝜂𝑆𝑛+1(𝑡) − (1 −

𝑉𝑛
𝑉𝑛+1

)𝜙1(𝑚 + 𝜂)𝑉𝑛+1(𝑡) +

(1 −
𝐸𝑛

𝐸𝑛+1
)𝜙2𝛽𝑆𝑛+1(𝑡)𝐼𝑛(𝑡) − (1 −

𝐼𝑛
𝐼𝑛+1

) 𝜙4𝑣𝐸𝑛 + (1 −
𝑇𝑛

𝑇𝑛+1
)𝜙4(𝜂 + 𝑑 +

𝜙)𝑇𝑛+1(𝑡)).

=
−𝑞(𝑚 + 𝜂)

𝑆𝑛+1
((𝑆𝑛+1 − 𝑆0)2 − (1 −

𝑉𝑛
𝑉𝑛+1

)𝜙1(𝑚 + 𝜂)𝑉𝑛+1(𝑡) + (𝜂 + 𝑑 +

 ф) 𝑇𝑛+1(𝑡) + 𝜑2

𝜓(𝜃 + 𝜂 + ∇q)𝛽𝑣𝑝3

𝜂(𝑚 + 𝜂)((𝑝1𝑝2𝑝3 − 𝜓𝛾𝑑𝑝1 − (1 − 𝛾)𝜓𝛾𝑑))
𝑅0) .

 

Let 𝐶4 =
𝜓(𝜃+𝜂+∇q)𝛽𝑣𝑝3

𝜂(𝑚+𝜂)((𝑝1𝑝2𝑝3−𝜓𝛾𝑑𝑝1−(1−𝛾)𝜓𝛾𝑑))
 

 =
−𝑞(𝑚 + 𝜂)

𝑆𝑛+1
((𝑆𝑛+1 − 𝑆0)2 − (1 −

𝑉𝑛
𝑉𝑛+1

)𝜙1(𝑚 + 𝜂)𝑉𝑛+1(𝑡) + (𝜂 + 𝑑 +

 ф) 𝑇𝑛+1(𝑡) + 𝜑2𝐶4𝑅0).         (15)

 

Hence, if 𝑅0 ≤ 1 then from (19) employs Δ𝑈𝑛 ≤ 0 for all 𝑛 ≥ 0. Therefore, 𝑈𝑛 is a nonincreasing sequence. 

So, here arises as a constant 0 such that lim𝑛→∞  𝑈𝑛 = 𝑈 which recommends lim𝑛→∞  (𝑈𝑛+1 − 𝑈𝑛) = 0. From 

system (3) and lim𝑛→∞  Δ𝑈𝑛 = 0 we have lim𝑛→∞  𝑆𝑛 = 𝑆0. For the case 𝑅0 < 1, we have lim𝑛→∞  𝑆𝑛+1 = 𝑆0 

and lim𝑛→∞  𝑉𝑛 = 0, lim𝑛→∞  𝐸𝑛 = 0. From system (3), we attain lim𝑛→∞  𝐼𝑛 = 0, lim𝑛→∞  𝑇𝑛 = 0 and 

lim𝑛→∞  𝑇𝑛 = 0. For the case 𝑅0 = 1, we have lim𝑛→∞  𝑆𝑛+1 = 𝑆0.Thus, from system (3), we obtain 

lim𝑛→∞  𝑇𝑛 = 0, lim𝑛→∞  𝐼𝑛 = 0, lim𝑛→∞  𝐸𝑛 = 0, lim𝑛→∞  𝑇𝑛 = 0 and lim𝑛→∞  𝐼𝑛 = 0 . Hence, 𝐸0 is globally 

asymptotically stable. 

5. Comparison 

Here we show that NSFD is how much better than other methods (Euler, RK4) graphically represent as 
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Figure 5. Numerical simulation for model (1) (a) ℎ = 0.01, ( b)ℎ = 0.1, (𝑐)ℎ = 1, (𝑑)ℎ = 1.5. (a-c) Stable 

TFE point with 𝑣 = 0.00498, 𝑞 = 0.977,𝑚 = 811085, 𝜂 = 0.25 ;other parameters remain fixed 𝛽 =

6.6752 ∗ 10−11, 𝜓 = 0.0656, 𝛾 = 0.1095, 𝜃 = 0.1325, ∇= 1.0043, 𝜙 = 0.002981, 𝜀 = 2.0136, 𝑑 =

4.42327 ∗ 10−6, 𝜓 = 0.0656, 𝛾 = 0.1095, 𝑑 = 4.42327 ∗ 10−6 

Conclusion 

In this study, we used a mathematical model to 

analyze the spread of tuberculosis (TB) while 

considering both symptomatic and 

asymptomatic cases. To ensure the reliability 

and stability of key points in the model, we 

established a critical threshold value. We 

developed three algorithms—Euler, RK-4, and 

NSFD—for the continuous model. However, 

the accuracy of the Euler and RK-4 algorithms 

is affected by the step size, which can lead to 

unpredictable results. In contrast, the NSFD 

algorithm continuously converges regardless 

of the step size. We examined the stability of 

critical locations in the NSFD scheme by 

considering both local and global factors. 

Global stability was assessed by analyzing 

monotonic sequences. This approach helped to 

emphasize the similarities between discrete 

and continuous models, which could be 

beneficial for society and medicine. Finally, 

we presented our findings in Figures 2, 3, and 

4, which could help predict the spread of TB. 

Our research aims to delve into broader 

epidemic models in future investigations, 

enhancing our understanding of the dynamics 

of disease spread. To better understand disease 

transmission dynamics, we will combine 

sensitivity approaches with NSFD. 

Data Availability 
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