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Background: Hydatid cysts, caused by Echinococcus granulosis, are a 

serious health concern with potential complications. Traditional diagnostic 

methods, like clinical examination and imaging interpretation, can be 

subjective and error-prone. Artificial Intelligence and Deep Learning 

techniques can revolutionize healthcare by enhancing disease detection and 

diagnosis, with the study focusing on precise detection and classification. 

Methods: A Convolutional Neural Network (CNN) model was 

developed, utilizing image preprocessing techniques to accurately 

classify hydatid cysts in Computed Tomography (CT) scans. 

Training relied on a curated dataset, enabling the model to learn and 

identify key patterns indicative of hydatid cyst presence and its stage 

detection in CT scan images. 

Result: The AI model employed in this study achieved a 90% 

accuracy in classifying hydatid cyst stages using CT scan images. By 

providing essential information about the cyst stage, healthcare 

professionals can accurately inform patients based on CT scan 

analysis. 

Conclusion:  The study explores the use of AI and DL in hydatid cyst stage 

classification using a CNN model trained on CT scan images. The 

approach aims to reduce hydatid cyst growth rates by aiding in early 

detection, highlighting the significant transformation in the healthcare 

industry due to advancements in disease detection, diagnosis, and 

treatment. 
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1. Introduction  

Hydatid cysts, caused by the parasitic infection 

of Echinococcus granulosis, present a global 

health challenge, requiring accurate 

classification and timely treatment 

recommendations (1). In recent years, 

convolutional neural networks (CNNs) have 

demonstrated remarkable success in medical 

image analysis, offering promising potential for 

hydatid cyst classification and treatment 

recommendation using CT scans (2). Accurate 

classification of hydatid cysts is a complex task 

due to their varied appearance and intricate 

nature (3). Traditional diagnostic methods 

heavily rely on human expertise, leading to 

time-consuming and subjective interpretations 

(4). To address these limitations, our study 

proposes a robust and automated CNN-based 

approach, aiming to assist healthcare 

professionals in making accurate and efficient 

diagnostic decisions. 

The classification system for hydatid disease, 

introduced by the World Health Organization 

(WHO) in 2002, categorizes the parasite's 

viability and disease activity; this classification 

distinguishes between active, inactive, and 

transitional stages of the parasite (5). A 

convolutional neural network (CNN) is a 

powerful algorithm used in the field of artificial 

intelligence (AI), specifically within the 

domain of deep learning (DL), which is a subset 

of machine learning (ML) (6). A computed 

tomography (CT) scan is a medical imaging 

technique that combines X-ray images taken 

from different angles to create detailed cross-

sectional images of the inside of the body. It 

provides a 3D representation of the scanned 

area, allowing healthcare professionals to 

visualize and analyze internal structures, 

organs, and tissues with greater clarity (7). Our 

approach involves training a CNN model on a 

large dataset of CT scans containing hydatid 

cyst images. The model learns to extract 

meaningful features from the CT scan images, 

enabling effective discrimination between 

different stages of hydatid cysts. The 

advantages of our approach are twofold. Firstly, 

it delivers precise and consistent classification 

results, reducing reliance on subjective 

interpretations. Secondly, it supports healthcare 

professionals in making informed decisions, 

ultimately enhancing patient outcomes. Our 

study highlights the potential of CNN-based 

deep learning approaches in hydatid cyst 

classification. The development of accurate and 

automated systems holds significant promise 

for improving diagnosis efficiency and 

accuracy, ultimately leading to enhanced 

patient care and outcomes. 

 2. Material and methods  

The dataset utilized in this approach comprises 

a total of 2416 computed tomography (CT) 

scan images, encompassing five distinct stages 

of hydatid cysts. The dataset, which is 

accessible via the Kaggle platform 

(https://www.kaggle.com/datasets/tahamu/hyd

atid-cyst), has been carefully curated for this 

study (8). 

Table 1: Primary dataset information 

Classes Amount Type Resolution 

Stage 1 251 JPG Vary  

Stage 2 541 JPG Vary 

Stage 3 444 JPG Vary  

Stage 4 442 JPG Vary 

Stage 5 738 JPG Vary 

2-1. Data preprocessing: 

Data preprocessing encompasses several steps, 

including image resizing, dataset splitting, and 

data augmentation (9). Firstly, for the purpose 

of training an excellent model and mitigating 

input inconsistencies during training, the 

images were resized to a standardized 

resolution of 300x300 pixels. This resizing 

process yields several advantages in model 

training, including reduced memory 

consumption during training, enhanced 

computational efficiency, and the 

establishment of consistent input sizes (10). 
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Neural networks commonly necessitate fixed-

dimensional inputs, and by resizing the images 

to a specific size, compatibility with the model 

architecture is ensured. The dataset was further 

partitioned into three distinct sets, namely the 

training set, validation set, and test set (11). 

This division was implemented to facilitate the 

development and evaluation of our proposed 

model, ensuring a comprehensive and reliable 

analysis. A proportion of 70% of the data was 

allocated to the training set, facilitating optimal 

training and ensuring the model's ability to 

learn and capture essential patterns effectively. 

The test set, comprising 20% of the data, 

remained independent from the training 

process, enabling the assessment of the model's 

performance on unseen data. This independent 

evaluation provided valuable insights into the 

model's generalization capabilities and its 

capacity to accurately classify hydatid cysts. 

The remaining 10% of the data formed the 

validation set, which played a critical role in 

fine-tuning the model and optimizing 

hyperparameters. At the end of each training 

epoch, this set of data contributed to refining 

the model's performance and making necessary 

adjustments. The systematic partitioning of the 

dataset into training, validation, and test sets 

facilitated the development and evaluation of 

our proposed model, fostering a robust and 

unbiased analysis. 

Then, data augmentation techniques were 

implemented to enhance the training process in 

our study (12). The purpose of data 

augmentation is to introduce diversity into the 

dataset, thereby improving the model's ability 

to generalize and handle a wide range of real-

world scenarios. By applying various 

transformations such as rotation, translation, 

scaling, and flipping to the existing images, the 

dataset's size was effectively increased, and 

variations in the appearance of the hydatid cyst 

images were introduced. This augmentation 

process played a crucial role in enabling the 

model to learn robust features and mitigate the 

risk of overfitting by exposing it to a broader 

range of examples. Additionally, data 

augmentation helped address the issue of 

dataset imbalance. As shown in Table 2, the 

dataset exhibited variations in the number of 

data samples for each class, indicating an 

imbalanced dataset. Such an imbalance can lead 

to poor training and biased learning from the 

data, resulting in the model performing well for 

some classes while performing poorly for 

classes with fewer samples. To address this 

challenge, data augmentation techniques were 

applied. As a result, our model demonstrates 

enhanced capabilities for accurately classifying 

hydatid cysts in unseen images. After 

performing data preprocessing operations, all 

images were resized to a resolution of 300x300 

pixels. By implementing data augmentation 

techniques, the dataset was expanded from 

2416 images to 9417 images, introducing 

variations in the dataset. The augmented images 

were subsequently saved on disk for subsequent 

processing. 

2-2. Proposed Model 

The proposed model architecture combines the 

pre-trained VGG16 model with additional fully 

connected layers to perform the final 

classification task (13). The base model, 

VGG16, is a CNN pre-trained on the ImageNet 

dataset (14). During training, we freeze the base 

model's layers to retain pre-trained knowledge. 

Our architecture adds flattening and dense 

layers for feature extraction and non-linearity 

(15). Batch normalization layers stabilize 

training, and dropout layers prevent overfitting 

(16, 17). The last dense layer outputs class 

probabilities using the SoftMax activation (18). 

We compiled the model with the Adam 

optimizer, learning rate, and categorical cross-

entropy loss for multi-class classification. 

Evaluation metrics include accuracy, precision, 

and recall. 
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Figure 2. The CNN model architecture we created by adding the VGG16 pertained model at the top.

Base Model: The base model is VGG16, a pre-

trained convolutional neural network (CNN) 

model that is loaded without the top layers (13). 

This model has been trained on the ImageNet 

dataset  for  image  classi f icat ion  (14) . 

Freezing Layers: The layers of the base model 

are frozen, which means they are not trainable 

during the training process (19). This allows us 

to keep the pre-trained weights intact and 

prevent them from being updated. 

Model Architecture: On top of the base model, 

new layers are added to create the final 

architecture. The additional layers are as 

follows: 

Flatten Layer: Converts the output of the base 

model into a 1-dimensional feature vector (15). 

Dense Layer (512 units): A fully connected 

layer with 512 units and a ReLU activation 

function, which introduces non-linearity to the 

model. 

Batch Normalization Layer: Normalizes the 

activations of the previous layer, helping with 

training stability and accelerating convergence. 

Dropout Layer (0.5): A regularization 

technique that randomly sets a fraction of input 

units to 0 during training, reducing overfitting. 

Figure 1.  Hydatid cysts dataset image samples at every stage 

 

 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
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Dense Layer (256 units): Another fully 

connected layer with 256 units and a ReLU 

activation function. 

Batch Normalization Layer: Another batch 

normalization layer. 

Dropout Layer (0.5): Another dropout layer. 

Dense Layer (5 units): The final dense layer, 

with 5 units, represents the number of classes in 

the classification task. It uses the SoftMax 

activation function to output the class 

probabilities. 

Compilation: The model is compiled using the 

Adam optimizer with a learning rate of 0.0001. 

The loss function used is categorical cross-

entropy, suitable for multi-class classification 

(20). Additionally, metrics such as accuracy, 

precision, and recall are specified to evaluate 

the model's performance. 

Model Performance: The model's performance 

was assessed through a comprehensive 

evaluation employing four distinct metrics: 

accuracy, precision, recall, and F1-score (21). 

Accurcy =  
TP + TN

TP + FP + TP + TN
            

      Precision =  
TP

TP + FP
  

 

Recall =  
TP

TP + FN
    

                           F1 Score =

 
2 ∗ (Precision ∗ Recall)

Precision + Recall
 

Where: TP – true positive, FP – false positive, 

TN – true negative, and FN – false negative. 

3. Results 

A CNN model was developed by utilizing 

VGG16 as the base model and incorporating 

additional layers. Proficiency was 

demonstrated in predicting the progression and 

severity of hydatid cysts in individuals. 

Effective discrimination between different 

stages of cyst development was exhibited. 

Moreover, an auxiliary technique was 

implemented, enabling treatment 

recommendations to be offered for impeding 

hydatid cyst growth in patients. The potential of 

deep learning in medical image analysis is 

showcased, with precise predictions and 

valuable treatment insights provided for 

enhanced patient care. 

3-1. Model Evaluation Results 

The testing set, previously unseen by the model, 

was subjected to evaluation in order to obtain a 

more precise assessment of its performance on 

novel and unfamiliar data. As illustrated in 

Figure 3, an analysis of the model's 

performance on the test set yielded evaluation 

metrics, revealing an accuracy rate of 0.90 

(90%), a precision score of 0.90 (90%), a recall 

rate of 0.89 (89%), and an f-1 score of 0.90 

(90%). Additionally, a loss of 0.25 was 

recorded on the test set; refer to Table 2. 

Accuracy serves as a measure of the ratio 

between correctly predicted outcomes and the 

total number of predictions made. A higher 

accuracy score signifies the model's ability to 

accurately classify a substantial portion of the 

samples. However, a comprehensive 

assessment of the model's effectiveness 

necessitates the computation of additional 

metrics such as precision. Precision quantifies 

the proportion of true positives among the total 

positive predictions made by the model, thereby 

identifying the model's competence in correctly 

labeling negative instances as negative. 

Conversely, recall measures the percentage of 

true positives relative to the actual positive 

instances present in the data, gauging the 

model's capability to identify all positive 

instances within the dataset. The F1 score, a 

harmonic mean of precision and recall, aids in 

achieving a balanced evaluation when faced 

with imbalanced classes. Ranging from 0 to 1, 

with 1 indicating optimal  
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Table 2: The model performance metrics on the test set. 

Precision Recall F1 – score Accuracy Validation Loss 

0.90 0.89 0.90 0.90 0.25 

Figure 3. Showcasing the visualization of performance metrics on the test set in the form of a bar chart. 

Figure 4. Visual representation of the model's performance in the form of an ROC Curve graph. 

3-2. ROC Curve 

The performance of a classification model is 

assessed through the utilization of a graph 

known as the Receiver Operating Characteristic 

(ROC) curve. In this graph, the true positive 

rate (TPR) is plotted against the false positive 

rate (FPR) at various threshold values. The 

separation of the signal from the noise is 

accomplished by this graphical representation, 
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offering a holistic evaluation of the model's 

performance across all classification thresholds 

(22). The model's performance on the ROC 

curve graph is illustrated in Figure 4, revealing 

valuable insights into its effectiveness. 

4. Discussion 

A CNN-based deep learning approach was 

employed in our study for the classification of 

hydatid cysts based on CT scans. The results 

obtained from our comprehensive evaluation 

demonstrate the potential of deep learning 

techniques in addressing the challenges 

associated with accurate classification of 

hydatid cysts. Hydatid cysts pose a complex 

task for accurate classification due to their 

varied appearance and intricate nature. 

Traditional diagnostic methods heavily rely on 

human expertise, leading to time-consuming 

and subjective interpretations. Our proposed 

CNN-based approach overcomes these 

limitations by leveraging the capability of deep 

learning models to extract meaningful features 

from CT scans. By training the model on a large 

dataset of hydatid cyst images, precise and 

consistent classification results can be 

achieved. `The advantages of our approach are 

twofold. Firstly, it reduces reliance on 

subjective interpretations by delivering precise 

and consistent classification results, thereby 

addressing the limitations of traditional 

diagnostic methods. Secondly, healthcare 

professionals are supported in making informed 

decisions, leading to enhanced patient care. The 

dataset used in our study, comprising 2416 CT 

scan images of hydatid cysts, was carefully 

curated and augmented to introduce diversity 

and address the issue of dataset imbalance. Data 

preprocessing operations, including image 

resizing, dataset splitting, and data 

augmentation, were performed to ensure 

consistent input sizes, facilitate model training, 

and enhance generalization capabilities. The 

proposed model architecture combines a pre-

trained VGG16 model with additional fully 

connected layers for feature extraction and non-

linearity. By freezing the layers of the pre-

trained base model, its knowledge is retained, 

and overfitting during training is prevented. 

The model's performance was evaluated using 

metrics such as accuracy, precision, recall, and 

F1-score, providing a comprehensive 

assessment of its effectiveness. Excellent 

performance was demonstrated by our model 

on the testing set, achieving an accuracy rate of 

90%, a precision score of 90%, a recall rate of 

89%, and an F1 score of 90%. These results 

indicate the model's ability to accurately 

classify hydatid cysts and make reliable 

predictions on unseen data. The potential of 

CNN-based deep learning approaches in 

hydatid cyst classification and treatment 

recommendation using CT scans was 

highlighted in our study. The combination of 

accurate classification and treatment insights 

offered by our approach can significantly 

contribute to the field of medical image analysis 

and ultimately improve patient care and 

outcomes in the management of hydatid cysts. 

5. Conclusion: 

The development of AI and ML has 

revolutionized healthcare, particularly in 

disease detection, diagnosis, and personalized 

treatment plans. Our study focused on using a 

CNN model to accurately classify hydatid cysts 

in CT scans. By training the model on a large 

dataset, we achieved high accuracy, precision, 

recall, and F1-score. This AI-based approach 

offers objective and consistent results, 

improving efficiency and supporting informed 

treatment decisions. Early and accurate 

detection of hydatid cysts improves patient care 

and outcomes. Future research can refine the 

approach by integrating additional imaging 

modalities and expanding the dataset for better 

generalizability. In conclusion, AI and ML 

techniques, specifically CNN-based models, 

enhance the diagnosis of hydatid cysts, leading 

to improved disease detection, treatment 

planning, and patient care. 
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