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Background: The COVID-19 pandemic has created substantial public health challenges 

worldwide, with Afghanistan facing unique vulnerabilities due to limited healthcare in-

frastructure and uneven vaccine coverage. Understanding the transmission dynamics of 

COVID-19 in this context is essential for designing effective intervention strategies. 

Methods: Epidemiological data, including confirmed cases, mortality, and vaccination 

rates, were obtained from Our World in Data. Vaccination data were available from Feb-

ruary 22, 2021, to December 31, 2023, and mortality rate estimation was based on data 

spanning April 1, 2020, to June 29, 2025. We developed a deterministic SEVIR com-

partmental model capturing susceptible, exposed, vaccinated, infectious, and recovered 

populations. The model was analyzed for biological feasibility, and key parameters, in-

cluding the vaccination and mortality rates, were estimated from the data. Sensitivity 

analyses were conducted to determine the influence of parameters on disease progres-

sion. The basic reproduction number (ℛ0) was derived analytically, and stability analysis 

of the disease-free equilibrium was performed. 

Results: Model simulations indicate that the current vaccination rate in Afghanistan is 

insufficient to eliminate COVID-19. Doubling vaccination coverage could significantly 

reduce infection prevalence, while achieving herd immunity would require vaccinating 

approximately 86% of the population. Sensitivity analyses highlighted the critical role 

of vaccination and transmission rates in controlling disease spread. The disease-free 

equilibrium is locally stable whenever ℛ0 < 1, confirming the theoretical feasibility of 

disease elimination. 

Conclusion: These findings provide comprehensive insights into COVID-19 dynamics 

in Afghanistan and offer evidence-based guidance for public health policymakers to op-

timize vaccination strategies and mitigate the ongoing impact of the pandemic. 
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Introduction 
 

Coronavirus disease 2019 (COVID-19), caused 

by the SARS-CoV-2 virus, remains a major 

global health challenge, primarily transmitted 

through respiratory droplets and contact with 

contaminated surfaces. Its clinical presentation 

ranges from mild symptoms, such as fever, 

cough, and fatigue, to severe respiratory distress 

and life-threatening complications (1–3). 

First identified in Wuhan, China, in late 2019, 

COVID-19 spread rapidly worldwide, prompt-

ing unprecedented public health interventions 

and profoundly affecting daily life. The WHO 

declared COVID-19 a pandemic, with over 

507.5 million confirmed cases and 6.22 million 

deaths reported globally across more than 200 

countries and territories as of April 25, 2022 (4). 

In Afghanistan, the first case was confirmed on 

February 24, 2020 (5). Since then, approxi-

mately 235,000 infections and over 8,000 deaths 

have been reported (6). The pandemic’s impact 

has been amplified by a fragile healthcare sys-

tem and delayed vaccination efforts, making 

COVID-19 one of the leading causes of mortal-

ity in 2021 (7). 

While vaccination is a key strategy to control 

COVID-19, practical challenges limit its effec-

tiveness. Mass immunization is constrained by 

vaccine supply, distribution logistics, medical 

contraindications, and public hesitancy. For ex-

ample, a substantial fraction of the Afghan pop-

ulation is reluctant to receive COVID-19 vac-

cines (8). Moreover, partially effective vaccina-

tion programs targeting only subsets of at-risk 

populations can, under certain conditions, exac-

erbate outbreak severity (9). 

Some studies have analyzed COVID-19 dynam-

ics in Afghanistan. Movaheedi et al. used a 

DINNs–SEIRV framework to reconstruct epi-

demic waves and estimated time-varying trans-

mission parameters (10). Awan et al. applied Ex-

ponential Smoothing to forecast case trends, 
showing continued growth (11). Husseini and 

Kamil estimated fatality, recovery, and transmis-

sion rates while noting data-related underestima-

tion (5). Besides, Dar et al. examined the mortal-

ity patterns using probabilistic methods across 

Afghanistan and Pakistan (12). While these 

works provide valuable insights, they leave key 

policy questions unanswered—particularly 

whether a controllability threshold exists and, if 

such targets cannot be fully met, which interven-

tion yields the greatest reduction in transmission 

under real-world constraints. In Afghanistan, 

limited adherence to masking and distancing and 

substantial economic and logistical barriers to 

mass vaccination make full implementation of 

standard control measures impractical. There-

fore, identifying which control strategy provides 

the highest impact when resources and compli-

ance are restricted becomes essential.  

We addressed this gap by evaluating the relative 

influence of major control measures within a de-

terministic model to guide policymakers toward 

the most effective, feasible interventions. In this 

study, the primary objective was to characterize 

the transmission dynamics of COVID-19 in Af-

ghanistan through the development and analysis 

of a deterministic compartmental model using 

differential equation techniques, calibrated with 

vaccination and mortality data from Our World 

in Data. The model incorporates key contextual 

constraints—including limited healthcare capac-

ity, economic challenges, and population-level 

behavioral factors—to evaluate the epidemio-

logical impact of feasible intervention strategies, 

with particular emphasis on vaccination. By 

combining real-world data with a context-spe-

cific mathematical framework, the study pro-

vides policymakers with rigorous, evidence-

based guidance for optimizing vaccination cov-

erage and strategically timing public health in-

terventions under operationally realistic condi-

tions. 
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Materials and Methods 
 

Model formulation 

The total population, denoted by 𝑛, is partitioned 
into five mutually exclusive fractional subpopu-

lations: susceptible (𝑠), vaccinated (𝑣), exposed 

(𝑒), infectious (𝑖), and recovered (𝑟). Each indi-

vidual belongs to exactly one compartment at 

any given time. 

Susceptible individuals are those at risk of con-

tracting the infection. Vaccinated individuals 

have received at least one dose of a COVID-19 

vaccine, but immunity is not assumed to be ab-

solute; they may still become infected at a re-

duced rate of (1 − 𝜖), where 𝜖 represents vac-
cine efficacy against infection. The exposed 

class consists of individuals infected but not yet 

infectious. Infectious individuals are capable of 

transmitting the disease to susceptible people. 

Recovered individuals have acquired immunity 

through vaccination, prior infection, or natural 

resistance. 

Disease transmission is modeled through a bilin-

ear mass-action term, 𝛽𝑠𝑖 , indicating that the 

rate of new infections is proportional to the prod-

uct of susceptible and infectious individuals. The 

model excludes environmental and vector-borne 

transmission, assuming that spread occurs exclu-

sively via direct human-to-human contact. A ho-

mogeneous mixing assumption is applied, 

whereby all individuals have an equal probabil-

ity of contacting one another. All parameters are 

considered constant in time. Reinfection is as-

sumed to occur in constant rate. The compart-

mental structure of the model is illustrated in 
Figure 1. 

  

 
Figure 1: The flow diagram between compartments 

 

Guided by this schematic and the assumptions 

outlined above, the system of governing equa-

tions is formulated as follows: 
𝑠̇ = Λ − 𝛽𝑠𝑖 − 𝛼𝑠 − 𝜇𝑠,
𝑒̇ = 𝛽𝑠𝑖 + (1 − 𝜖)𝛽𝑣𝑖 − 𝛾𝑒 − 𝜇𝑒,
𝑣̇ = 𝛼𝑠 − (1 − 𝜖)𝛽𝑣𝑖 − 𝜖𝑣 − 𝜇𝑣,
𝑖̇ = 𝛾𝑒 − 𝜅𝑖 − 𝛿𝑖 − 𝜇𝑖,
𝑟̇ = 𝜖𝑣 + 𝜅𝑖 − 𝜇𝑟.

 
(Eq1

) 

 

 

 

Parameter Definitions 
The parameters used in the model (Eq1) are sum-

marized in Table 1. 
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Table 1: The summary of parameters 

 

Sym-

bol 

Description Source Value 

Λ Recruitment rate of susceptible individuals into the population As-

sumed 
0.00971 

𝛽 The rate at which infectious individuals transmit the disease to susceptible 

individuals 

(24-26) [0.3, 0.5] 

𝛼 Rate at which susceptible individuals are vaccinated and move into the 

vaccinated class 

Esti-

mated 
0.00325 

𝜇 Natural death rate, assumed equal across all compartments (14) 0.000016 

𝜖 Vaccine efficacy (𝜖) represents the reduction in susceptibility to infection 

among vaccinated individuals. It is assumed to be below average, reflect-

ing the greater affordability and availability of lower-priced, lower-effi-

cacy vaccines in Afghanistan. 

(15-17) 0.75 

𝛾 The inverse of the mean latent period, determining the rate of progression 

from exposed to infectious 

(21) 0.33 

𝛿 COVID-19-induced death rate of infectious individuals esti-

mated 
0.0025 

𝜅 Recovery rate of infectious individuals (22) 0.196 

 

The parameter 𝛬 represents the recruitment rate, 

defined as the total inflow into the susceptible 

class arising from natural births, immigration 

into the country, the return of individuals who 

lose infection-induced immunity, and the inflow 

generated by vaccine inefficacy (i.e., vaccinated 

individuals who do not acquire sufficient protec-

tion). For simplicity and model fitting, we as-

sume Λ = 0.00971 . The contribution from 
births is estimated using Afghanistan’s crude 

birth rate in 2023, reported as 35.437 births per 

1,000  population per year (13). This corre-

sponds to 
35.437

1000 × 365
≈ 9.71 × 10−5 = 0.0000971, 

the remaining portion of 𝛬 accounting for the in-

flow generated by loss of immunity after recov-

ery, immigration into the country, and vaccine 

inefficacy (i.e., vaccinated individuals who fail 

to acquire adequate protection). The parameter 𝜇 
corresponds to the natural death rate. In short-

term epidemic modeling, 𝜇 is typically negligi-
ble because of its small magnitude relative to ep-

idemic-related rates. The natural daily death rate 

(𝜇) was estimated using national mortality statis-

tics. According to Macrotrends (14), the crude 

death rate in Afghanistan is approximately 5.8 

deaths per 1,000 population per year. Converting 

this to a daily rate yields 𝜇 = 5.8/(1000 ×
365) ≈ 0.000016 per person per day.  
Vaccine efficacy against infection is denoted by 

𝜖 . For COVID-19 vaccines, reported efficacy 

ranges from 70%  to 95% , depending on vac-

cine type and circulating variants. For instance, 

Pfizer–BioNTech (BNT162b2, mRNA) demon-

strated 95%  efficacy (15), Moderna (mRNA-
1273, mRNA) showed similar results (16), while 

Johnson & Johnson/Janssen (Ad26.COV2.S, ad-

enovirus vector) demonstrated about 67% effi-
cacy (17). Considering the reported vaccine effi-

cacy levels and Afghanistan’s limited economic 

capacity, access to high-efficacy vaccines is less 

likely due to their higher cost, while lower-effi-

cacy vaccines are more accessible and afforda-

ble. Therefore, the vaccine efficacy was set to 

𝜖 = 0.75 to reflect this realistic scenario. 

The incubation period is denoted by 𝛾 and varies 
across variants. The median incubation period 

was approximately 5.1  days for the ancestral 

Wuhan strain (18), 4 days for the Delta variant 
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(19), and 3 days for Omicron BA.1 (20). Fol-

lowing (21), we adopt an average incubation pe-

riod of 3  days, corresponding to 𝛾 ≈ 1/3 ≈
0.33. 
The average infectious period also differs across 

variants. Based on (22), we assume a 7-day in-

fectious period, which implies a recovery rate of 

𝜅 ≈ 0.14 per day. 

The disease-induced death rate, 𝛿, is determined 
from the case fatality rate (CFR) and the average 

infectious period. For instance, if the CFR is 1% 
and the infectious period is approximately 7 days, 

then 𝛿 ≈ 0.0014 per day. In more severe out-

breaks, higher values of 𝛿  may occur (23). In 

this study, however, 𝛿  was estimated directly 
from reported data (see subsection mortality 

rate). 

 

Analytical methods 

Non-negativity Preservation and Boundedness 

In the mathematical modeling of biological phe-

nomena, positivity and boundedness are funda-

mental properties. Without these, the model may 

yield results that are biologically meaningless or 

impractical for real-world interpretation. 

Let the initial conditions of system (Eq1) satisfy 

𝑠(0) ≥ 0, 𝑒(0) ≥ 0, 𝑣(0)
≥ 0, 𝑖(0)
≥ 0, 𝑟(0) ≥ 0, 

(Eq2) 

and define the total population as 

𝑛(𝑡) = 𝑠(𝑡) + 𝑒(𝑡) + 𝑣(𝑡) + 𝑖(𝑡) + 𝑟(𝑡)
+ 𝑑(𝑡). 

Under these assumptions, the following proper-

ties hold for the solutions of system (Eq1). 

Theorem 1 (Positive invariance of the feasible 

region).  For the system (Eq1), the feasible re-

gion Ω  is defined as Ω = {(𝑠, 𝑒, 𝑣, 𝑖, 𝑟) ∈

ℝ+
5 : 0 ≤ 𝑛 ≤

Λ

𝜇
}.  Then, the region Ω  is posi-

tively invariant under the flow induced by the 

system (Eq1); that is, any solution with initial 

condition in Ω remains in Ω for all t ≥ 0. 
Proof. From (Eq1), one can easily see that 

𝑛̇ = Λ − 𝜇𝑛 − 𝛿𝑖. 

In the absence of disease-induced mortality (𝛿 =
0), the above equation simplifies to 

𝑛̇ + 𝜇𝑛 = Λ, 
which is a linear ordinary differential equation 

and under the initial condition 𝑛(0) = 𝑛0 can be 

easily solved as 

𝑛(𝑡) =
Λ

𝜇
+ 𝑛0𝑒

−𝜇𝑡. 

We see that 𝑛(𝑡) →
Λ

𝜇
 as 𝑡 → ∞. Thus, for any 

𝑡 ≥ 0  we have 0 ≤ 𝑛(𝑡) ≤
Λ

𝜇
. Therefore, the 

system (Eq1), is biologically meaningful.   

Theorem 2.  The solutions of system (Eq1) with 

the initial condition (Eq2) is non-negative for 

any t ≥ 0. Additionally, the solutions are uni-

formly ultimately bounded 

 

Proof 
To prove the positivity of the solutions of the 

system we use contradiction approach. Let the 

positivity fails, then at least one variable be-

comes nonpositive at some time 𝑡∗ > 0. For the 

first equation of the system, assume 𝑠(𝑡∗) = 0 

and 𝑠̇(𝑡∗) < 0. Then: 

𝑠̇ = Λ − 𝛽𝑠𝑖 − (𝛼 + 𝜇)𝑠 
at time 𝑡∗ becomes as 𝑠̇(𝑡∗) = Λ, which is obvi-

ously greater than 0. Thus the assumption must 

not be true and therefore we must have 𝑠(𝑡) ≥ 0 

for any 𝑡 ≥ 0. 
Now, we turn our attention to the second equa-

tion. For some time 𝑡̃ > 0 , let 𝑒(𝑡̃) = 0  and 

𝑒̇(𝑡̃) < 0. Then, at time 𝑡̃, we get 

𝑒̇ = [𝛽𝑠 + (1 − 𝜖)𝛽𝑣]𝑖 > 0, 
when 𝑠(𝑡̃) > 0 , 𝑣(𝑡̃) > 0 , and 𝑖(𝑡̃) > 0 . This 

contradicts the assumption, thus 𝑒(𝑡) ≥ 0 must 

holds for any 𝑡 ≥ 0. 
The positivity of all other variables can be ob-

tained similarly. Therefore, all solutions of sys-

tem (Eq1) are non-negative for all 𝑡 ≥ 0. 

We know that 𝑛 ≤
Λ

𝜇
, and 𝑛 = 𝑠 + 𝑒 + 𝑣 + 𝑖 +

𝑟, thus each solutions are bounded. This com-
pletes the proof.   
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Disease-Free Equilibrium (DFE) 

In compartmental epidemiological modeling, the 

disease-free equilibrium (DFE) represents the 

state in which the infection is entirely absent 

from the population. Formally, this condition is 

expressed as 

𝑒(𝑡) = 0, 𝑖(𝑡) = 0. 
At this equilibrium, the population may consist 

of susceptible, vaccinated, or recovered individ-

uals, but no one remains exposed or infectious. 

Substituting these conditions into system (Eq1) 

gives the equilibrium values 

𝑠 =
Λ

𝛼 + 𝜇
, 𝑣 =

𝛼Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)
, 𝑟

=
𝜖𝛼Λ

𝜇(𝛼 + 𝜇)(𝜖 + 𝜇)
. 

Thus, the DFE point is defined as 
(𝑠̃, 𝑒̃, 𝑣̃, 𝑖̃, 𝑟̃)

= (
Λ

𝛼 + 𝜇
, 0,

𝛼Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)
, 0,

𝜖𝛼Λ

𝜇(𝛼 + 𝜇)(𝜖 + 𝜇)
) 

 

The basic reproduction number 
To derive meaningful public health insights 

from system (Eq1), it is necessary to compute 

the basic reproduction number, denoted by ℛ0. 

This threshold parameter measures the average 

number of secondary cases generated by a single 

infectious individual in a fully susceptible popu-

lation. Its calculation commonly relies on the 

Next Generation Matrix (NGM) method (27), 

where ℛ0 is given by the spectral radius (domi-
nant eigenvalue) of the product 

𝐹𝑉−1, 
where the matrices ℱ and 𝒱 represent the rates 
of new infections and transitions between com-

partments, respectively, and is obtained as 

ℱ = (
𝛽𝑠𝑖 + (1 − 𝜖)𝛽𝑣𝑖

0
) ,  𝒱

= (
(𝛾 + 𝜇)𝑒

(𝜅 + 𝛿 + 𝜇)𝑖 − 𝛾𝑒
). 

Thus, 𝐹 and 𝑉 are defined as their Jacobian ma-
trices and is obtained as: 

𝐹 = (
0 𝛽𝑠 + (1 − 𝜖)𝛽𝑣
0 0

) ,  𝑉

= (
𝛾 + 𝜇 0
−𝛾 𝜅 + 𝛿 + 𝜇

). 

After applying standard linear algebra tech-

niques, the matrix is obtained as: 

𝐹𝑉−1 = (
𝛽𝛾[𝑠 + (1 − 𝜖)𝑣]

(𝛾 + 𝜇)(𝜅 + 𝛿 + 𝜇)

𝛽𝑠 + (1 − 𝜖)𝛽𝑣

𝜅 + 𝛿 + 𝜇
0 0

). 

Thus, the BRN is expressed as: 
ℛ0

=
𝛽𝛾Λ

(𝛼 + 𝜇)(𝛾 + 𝜇)(𝜅 + 𝛿 + 𝜇)

+
(1 − 𝜖)𝛽𝛼𝛾Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)(𝛾 + 𝜇)(𝜅 + 𝛿 + 𝜇)
. 

(Eq3) 

The calculated basic reproduction number ℛ0 
quantifies the average number of secondary 

cases generated by a single infected individual in 

a completely susceptible population. The first 

term represents transmission among unvac-

cinated individuals, while the second accounts 

for breakthrough infections among vaccinated 

individuals with partial immunity. A value of 

ℛ0 > 1 implies that the infection can persist and 

spread in the population, whereas ℛ0 < 1 indi-

cates that the disease will eventually die out. 

Theorem 3.  The DFE is locally asymptotically 

stable if ℛ0 < 1. 

 

Proof 
The idea is to linearize the system (Eq1) around 

the DFE point using Jacobin matrix. Let 𝐹𝑖 , 𝑖 =
1, … ,6 denote the right side and 𝑀 be the Jaco-

bin of the system. Therefore 
𝑀

=

(

 
 

−𝛽𝑖 − 𝛼 − 𝜇 0 0 −𝛽𝑠 0

𝛽𝑖 −(𝛾 + 𝜇) (1 − 𝜖)𝛽𝑖 𝛽𝑠 + (1− 𝜖)𝛽𝑣 0
𝛼 0 −(1 − 𝜖)𝛽𝑖 − (𝜖 + 𝜇) −(1 − 𝜖)𝛽𝑣 0

0 𝛾 0 −(𝜅 + 𝛿 + 𝜇) 0
0 0 𝜖 𝜅 −𝜇)

 
 
. 

Now, the matrix 𝑀 at the DFE point is denoted 

as 𝑀𝐷𝐹𝐸 and is defined as 
𝑀𝐷𝐹𝐸

=

(

 
 
 
 
 
 
−𝛼 − 𝜇 0 0 −

𝛽Λ

𝛼 + 𝜇
0

0 −(𝛾 + 𝜇) 0
𝛽Λ

𝛼 + 𝜇
+

(1 − 𝜖)𝛽𝛼Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)
0

𝛼 0 −(𝜖 + 𝜇) −
(1 − 𝜖)𝛽𝛼Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)
0

0 𝛾 0 −(𝜅 + 𝛿 + 𝜇) 0
0 0 𝜖 𝜅 −𝜇)

 
 
 
 
 
 

. 

The eigenvalues of matrix 𝑀𝐷𝐹𝐸 are −(𝛼 + 𝜇), 
−(𝜖 + 𝜇), −𝜇, and the eigenvalues of the 2 × 2 

matrix 
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(

−(𝛾 + 𝜇) 𝛾
𝛽Λ

𝛼 + 𝜇
+

(1 − 𝜖)𝛽𝛼Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)
−(𝜅 + 𝛿 + 𝜇)

). 

Since three of eigenvalues are negative, there-

fore, in order the eigenvalues of the matrix have 

negative real parts, the above 2 × 2 matrix must 
have negative trace and positive determinant 

(28). The negativity of the trace is obvious. For 

the determinant to be positive we get 

(𝛾 + 𝜇)(𝜅 + 𝛿 + 𝜇) >
𝛽𝛾Λ

𝛼 + 𝜇
+
(1 − 𝜖)𝛽𝛼𝛾Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)
. 

Then, we get 

1

>
𝛽𝛾Λ

(𝛼 + 𝜇)(𝛾 + 𝜇)(𝜅 + 𝛿 + 𝜇)

+
(1 − 𝜖)𝛽𝛼𝛾Λ

(𝛼 + 𝜇)(𝜖 + 𝜇)(𝛾 + 𝜇)(𝜅 + 𝛿 + 𝜇)
= ℛ0. 

Thus, the DFE is locally asymptotically stable if 

ℛ0 is strictly less than one. ◻ 

 
 

Results 
 

Estimation of the Daily Vaccination Rate 

Let 𝐶𝑡  denote the cumulative number of vac-

cinated individuals up to day 𝑡, and let 𝑁 repre-
sent the total population. The daily new vaccina-

tions are computed as 

Δ𝐶𝑡 = 𝐶𝑡 − 𝐶𝑡−1, 𝑡 = 2, … , 𝑇, Δ𝐶1 = 𝐶1. 
If cumulative data are missing for some days, we 

apply linear interpolation to estimate the miss-

ing values, avoiding artificial spikes due to batch 

reporting. 

The per-capita daily vaccination rate is then cal-

culated as 

𝛼𝑡 =
Δ𝐶𝑡
𝑁
. 

To reduce the impact of reporting noise and ir-

regularities, we smooth 𝛼𝑡 using a 7-day moving 
average: 

𝛼̃𝑡 =
1

7
∑ 𝛼𝑖

𝑡+3

𝑖=𝑡−3

. 

Finally, a single average vaccination rate over 

the observation period is obtained as 

𝛼 =
1

𝑇
∑𝛼̃𝑡

𝑇

𝑡=1

, 

which can be used as a constant vaccination rate 

in compartmental models. Based on the data re-

ported in (29), the average daily vaccination rate 

was estimated to be 0.00325 (Figure 2).
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Figure 2: Graph of reported daily cumulative vaccinations, interpolated data, daily per-capita vaccination rate, 7-day 

smoothed average, and overall average 

 

Mortality rate per day 
We estimated the daily mortality rate using re-

ported confirmed cases (𝐶𝑡) and deaths (𝐷𝑡) at 

day 𝑡 (𝑡 = 1, … , 𝑇). The number of active infec-
tions was defined as 

𝐼𝑡 = ∑ 𝐶𝑠

𝑡

𝑠=𝑡−𝐿+1

 −  ∑ 𝐷𝑠

𝑡

𝑠=𝑡−𝐿+1

, 

with 𝐿 = 14 days (30), reflecting the average in-

fectious period. The day-specific mortality rate 

was then given by 

𝛿𝑡 =
𝐷𝑡
𝐼𝑡
, 

while the overall period-average mortality rate 

was 

𝛿 =
∑ 𝐷𝑡
𝑇
𝑡=1

∑ 𝐼𝑡
𝑇
𝑡=1

. 

To reduce reporting noise and weekly fluctua-

tions, we replaced 𝐶𝑡  and 𝐷𝑡  with their 7-day 

centered rolling averages, 

𝐶̃𝑡 =
1

7
∑ 𝐶𝑡+𝑘

3

𝑘=−3

,  𝐷̃𝑡 =
1

7
∑ 𝐷𝑡+𝑘

3

𝑘=−3

, 

and further smoothed the sequence 𝛿𝑡 itself us-

ing the same procedure, yielding a clean trajec-

tory of mortality dynamics. Accordingly, the 

mortality rate was estimated as 𝛿 = 0.0025 
(Figure 3). 
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Figure 3: The daily reported rate 

 

Sensitivity analysis 
In order to understand the impact of each param-

eter on the dynamics of the system (Eq1), we 

need to perform a sensitivity analysis. The anal-

ysis tells us how much changes in parameter can 

considerably impact the outcome. Thus, we can 

decide to focus on which in order to control the 

disease. For this purpose, we use the normalized 

formula 

𝑆𝑝 =
𝑝

ℛ0
 
∂ℛ0
∂𝑝
. 

The idea is such that we let one parameter to 

change and keep all others constant. After run-

ning a sensitivity analysis on (Eq3), we come to 

the conclusion that parameters 𝛽 , Λ, 𝛼 , and 𝜅 
have the highest impact, respectively. On the 

other hand, however, we noticed that parameters 

𝛿, 𝜇, 𝜖, and 𝛾 have lowest impact on the system, 

respectively (Figure 4). We must note that a pos-

itive sensitivity index means that by increasing 

(decreasing) that parameter the amount of ℛ0 in-
creases (decreases), while negative sign means 

that increasing (decreasing) that parameter the 

amount of ℛ0 decreases (increases). According 

to the sensitivity indices presented in Table 2, 

the parameters β and Λ each have a sensitivity 

index of 1, indicating that 𝑥 % change in either 

parameter results in a corresponding 𝑥 % 

change in ℛ0. Conversely, the parameter α has a 

sensitivity index of -0.994, meaning that an 𝑥 % 

increase (or decrease) in 𝛼 leads to an approxi-

mate 0.994𝑥 %  decrease (or increase) in the 

value of ℛ0. 
The sensitivity index of each parameter is de-

picted in figure 4. The baseline values are pre-

sented in Table 2. 
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Figure 4: The sensitivity analysis bar of ℛ0 

 
Table 2: The baseline and sensitivity index of parameters 

 

Parameter 𝜷 𝜸 𝜦 𝜶 𝝁 𝜿 𝜹 𝝐 
Baseline value 0.5 0.33 0.00971 0.00325 0.000016 0.196 0.0025 0.75 
Sensitivity index 1 −0.000048 1 −0.994 −0.005 −0.9873 −0.0126 −0.0043 

 

Discussion 
 

There are two types of parameters in the model: 

controllable and non-controllable. Among them, 

𝛽, 𝛼, and 𝜖 can be controlled. For example, 𝛽 
can be reduced through mask-wearing, avoiding 

crowded gatherings, and increasing public 

awareness. The parameter 𝛼 can be raised by ex-

panding vaccination campaigns, while 𝜖 can be 

improved by administering high-efficacy vac-

cines. 

Increasing vaccination rates in Afghanistan is 

feasible but challenging. Limited cold-chain ca-

pacity, misinformation, and restricted access in 

insecure areas hinder large-scale campaigns. 

However, urban centers and the existing health 

facility network can scale distribution if supplies 

are stable. Community-based outreach—espe-

cially through local leaders and mobile vaccina-

tion teams—has proven effective in improving 

acceptance. With continued donor support and 

targeted delivery strategies, higher vaccination 

coverage remains achievable despite structural 

constraints. 

According to sensitivity analysis section (Fig-

ure 4), the parameters 𝛽 and 𝛼 have the greatest 

impact on the system, whereas 𝜖 has the least in-

fluence. Therefore, interventions should primar-

ily target reducing 𝛽 and increasing 𝛼, as focus-

ing on 𝜖 would yield comparatively limited re-
sults. In other words, rather than prioritizing the 

purchase of high-efficacy vaccines, it may be 

more effective to vaccinate a larger proportion 

of the population with lower-efficacy vaccines. 

 

Impact of Vaccination 
To evaluate the role of vaccination in mitigating 

the COVID-19 epidemic, we considered three 

simulation scenarios: (i) no vaccination (base-

line), (ii) vaccination at the observed average 

daily coverage, and (iii) an accelerated campaign 

with twice the observed coverage. 

In all cases, vaccine efficacy was fixed at 𝜖 =
0.75, and vaccine doses were assumed to be dis-
tributed uniformly across all age groups. The 
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simulation outcomes, shown in Figure 5, 

demonstrate that vaccination substantially re-

duced peak prevalence, delayed the timing of the 

epidemic peak, and decreased both total cases 

and deaths. Among the scenarios considered, the 

accelerated campaign produced the most signif-

icant benefits. 

 

 
Figure 5: Comparison of different vaccination rates on COVID-19 dynamics (The graph is obtained by numerically 

solving the system using the Runge-Kutta method) 

 

Policy Implications 
Model projections indicate that doubling the cur-

rent vaccination rate would reduce infections by 

more than 15% . Furthermore, an accelerated 

vaccination program would shift the epidemic 

peak to a later date, as illustrated in Figure 5. 

Following the herd immunity framework de-

scribed in (28), the minimum proportion 𝑝  of 
susceptible individuals that must be vaccinated 

to interrupt transmission is given by 

𝑝 > 1 −
1

ℛ0
≈ 0.867. 

This implies that approximately 86%  of the 

population must be vaccinated to achieve long-

term epidemic control. 

 

Strengths and Limitations 
A key strength of this study is the application of 

a mathematically rigorous framework to capture 

COVID-19 dynamics, with explicit incorpora-

tion of vaccination data. Additionally, the sensi-

tivity analysis provided valuable insights into 

the most influential parameters, offering guid-

ance for targeted interventions. 

Nonetheless, several limitations should be 

acknowledged. First, the assumption of homoge-

neous mixing may oversimplify real-world con-

tact patterns, given variations in population den-

sity, cultural practices, and mobility across Af-

ghanistan. Second, parameter estimates were de-

rived from reported data, which may be incom-

plete due to underreporting, limited testing, or 

delays in data collection. Third, the model did 

not account for waning immunity, reinfections, 

or the emergence of new variants with higher 

transmissibility or immune escape. Each of these 

factors could significantly affect projections. 

Furthermore, the vaccination rate was treated as 

constant, whereas in reality it fluctuates depend-

ing on vaccine supply and political stability. 

 

Future Directions 
Future research should extend the model by in-

corporating age structure, particularly relevant 
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for Afghanistan’s young population, as well as 

stochastic effects to capture uncertainties in 

small populations or localized outbreaks. Ac-

counting for waning immunity (assumed con-

stant here) and booster vaccination strategies 

would also improve realism. Incorporating spa-

tial heterogeneity could refine predictions by re-

flecting regional disparities in vaccination cov-

erage, healthcare access, and population density. 

Moreover, integrating behavioral dynamics—

such as vaccine hesitancy and adherence to non-

pharmaceutical interventions (NPIs)—would 

enhance the policy relevance of the model. 

Reported case data suggest a possible link be-

tween COVID-19 transmission and seasonality, 

with major waves often beginning in the early 

summer (Figure 3). This implies that transmis-

sion rates may be partially seasonal. However, 

the current model does not capture seasonality 

and cannot predict epidemic waves, which rep-

resents another limitation to be addressed in fu-

ture work. 

 

Conclusion 
 

This study employed a compartmental model to 

analyze the dynamics of COVID-19 in Afghani-

stan, with a particular focus on the role of vac-

cination. Sensitivity analysis revealed that trans-

mission rate (𝛽) and vaccination coverage (𝛼) 
are the most influential parameters, while vac-

cine efficacy (𝜖) has a comparatively smaller im-
pact. These findings suggest that public health 

interventions should prioritize reducing trans-

mission through non-pharmaceutical measures 

and expanding vaccine coverage, even if the 

available vaccines are of moderate efficacy. 

Simulation results further demonstrated that vac-

cination substantially reduces peak prevalence, 

delays the epidemic peak, and lowers overall 

morbidity and mortality, with accelerated cam-

paigns producing the greatest benefits. Policy 

projections indicate that approximately 86% of 

the population must be vaccinated to achieve 

herd immunity, underscoring the urgent need to 

strengthen vaccination programs. 

Policymakers should prioritize vaccinating as 

many individuals as possible, even if only lower-

efficacy vaccines are available. The target 

should be set at vaccinating approximately 86% 

of the population; although achieving this level 

may be practically challenging, approaching this 

threshold would still produce a substantial re-

duction in disease transmission and a meaning-

ful public health impact. 

Despite its strengths, including the use of real 

vaccination data and rigorous sensitivity analy-

sis, the model has limitations, such as the as-

sumption of homogeneous mixing, constant vac-

cination rates, and emerging variants. These fac-

tors highlight the need for more refined models 

that incorporate age structure, spatial heteroge-

neity, behavioral dynamics, and seasonality. 

Overall, our results emphasize that timely ex-

pansion of vaccination coverage, supported by 

sustained non-pharmaceutical interventions, is 

the most effective strategy for long-term control 

of COVID-19 in Afghanistan. Future work 

should address the identified limitations to pro-

vide more accurate guidance for policymakers in 

preparing for subsequent epidemic waves. 
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