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Background: The COVID-19 pandemic has created substantial public health challenges
worldwide, with Afghanistan facing unique vulnerabilities due to limited healthcare in-
frastructure and uneven vaccine coverage. Understanding the transmission dynamics of
COVID-19 in this context is essential for designing effective intervention strategies.
Methods: Epidemiological data, including confirmed cases, mortality, and vaccination
rates, were obtained from Our World in Data. VVaccination data were available from Feb-
ruary 22, 2021, to December 31, 2023, and mortality rate estimation was based on data
spanning April 1, 2020, to June 29, 2025. We developed a deterministic SEVIR com-
partmental model capturing susceptible, exposed, vaccinated, infectious, and recovered
populations. The model was analyzed for biological feasibility, and key parameters, in-
cluding the vaccination and mortality rates, were estimated from the data. Sensitivity
analyses were conducted to determine the influence of parameters on disease progres-
sion. The basic reproduction number (R,) was derived analytically, and stability analysis
of the disease-free equilibrium was performed.

Results: Model simulations indicate that the current vaccination rate in Afghanistan is
insufficient to eliminate COVID-19. Doubling vaccination coverage could significantly
reduce infection prevalence, while achieving herd immunity would require vaccinating
approximately 86% of the population. Sensitivity analyses highlighted the critical role
of vaccination and transmission rates in controlling disease spread. The disease-free
equilibrium is locally stable whenever R, < 1, confirming the theoretical feasibility of
disease elimination.

Conclusion: These findings provide comprehensive insights into COVID-19 dynamics
in Afghanistan and offer evidence-based guidance for public health policymakers to op-
timize vaccination strategies and mitigate the ongoing impact of the pandemic.

Keywords: Afghanistan, COVID-19, Compartmental modeling, Vaccination rate

®
Copyright © 2026 Afghanistan Journal of infectious Diseases, and Ghalib University. All rights reserved.

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

114


file:///C:/Users/MCS%20ELITEBOOK%20840G5/Downloads/nabave786@gmail.com
https://doi.org/10.60141/ajid.135
https://ajid.ghalib.edu.af/index.php/ajid

Nabavi & Hussaini. Afghanistan Journal of Infectious Diseases. 2026; 4(1):114-126

Introduction

Coronavirus disease 2019 (COVID-19), caused
by the SARS-CoV-2 virus, remains a major
global health challenge, primarily transmitted
through respiratory droplets and contact with
contaminated surfaces. Its clinical presentation
ranges from mild symptoms, such as fever,
cough, and fatigue, to severe respiratory distress
and life-threatening complications (1-3).

First identified in Wuhan, China, in late 2019,
COVID-19 spread rapidly worldwide, prompt-
ing unprecedented public health interventions
and profoundly affecting daily life. The WHO
declared COVID-19 a pandemic, with over
507.5 million confirmed cases and 6.22 million
deaths reported globally across more than 200
countries and territories as of April 25, 2022 (4).
In Afghanistan, the first case was confirmed on
February 24, 2020 (5). Since then, approxi-
mately 235,000 infections and over 8,000 deaths
have been reported (6). The pandemic’s impact
has been amplified by a fragile healthcare sys-
tem and delayed vaccination efforts, making
COVID-19 one of the leading causes of mortal-
ity in 2021 (7).

While vaccination is a key strategy to control
COVID-19, practical challenges limit its effec-
tiveness. Mass immunization is constrained by
vaccine supply, distribution logistics, medical
contraindications, and public hesitancy. For ex-
ample, a substantial fraction of the Afghan pop-
ulation is reluctant to receive COVID-19 vac-
cines (8). Moreover, partially effective vaccina-
tion programs targeting only subsets of at-risk
populations can, under certain conditions, exac-
erbate outbreak severity (9).

Some studies have analyzed COVID-19 dynam-
ics in Afghanistan. Movaheedi et al. used a
DINNs-SEIRV framework to reconstruct epi-
demic waves and estimated time-varying trans-
mission parameters (10). Awan et al. applied Ex-
ponential Smoothing to forecast case trends,
showing continued growth (11). Husseini and

Kamil estimated fatality, recovery, and transmis-
sion rates while noting data-related underestima-
tion (5). Besides, Dar et al. examined the mortal-
ity patterns using probabilistic methods across
Afghanistan and Pakistan (12). While these
works provide valuable insights, they leave key
policy questions unanswered—particularly
whether a controllability threshold exists and, if
such targets cannot be fully met, which interven-
tion yields the greatest reduction in transmission
under real-world constraints. In Afghanistan,
limited adherence to masking and distancing and
substantial economic and logistical barriers to
mass vaccination make full implementation of
standard control measures impractical. There-
fore, identifying which control strategy provides
the highest impact when resources and compli-
ance are restricted becomes essential.

We addressed this gap by evaluating the relative
influence of major control measures within a de-
terministic model to guide policymakers toward
the most effective, feasible interventions. In this
study, the primary objective was to characterize
the transmission dynamics of COVID-19 in Af-
ghanistan through the development and analysis
of a deterministic compartmental model using
differential equation techniques, calibrated with
vaccination and mortality data from Our World
in Data. The model incorporates key contextual
constraints—including limited healthcare capac-
ity, economic challenges, and population-level
behavioral factors—to evaluate the epidemio-
logical impact of feasible intervention strategies,
with particular emphasis on vaccination. By
combining real-world data with a context-spe-
cific mathematical framework, the study pro-
vides policymakers with rigorous, evidence-
based guidance for optimizing vaccination cov-
erage and strategically timing public health in-
terventions under operationally realistic condi-
tions.
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Materials and Methods

Model formulation

The total population, denoted by n, is partitioned
into five mutually exclusive fractional subpopu-
lations: susceptible (s), vaccinated (v), exposed
(e), infectious (i), and recovered (r). Each indi-
vidual belongs to exactly one compartment at
any given time.

Susceptible individuals are those at risk of con-
tracting the infection. Vaccinated individuals
have received at least one dose of a COVID-19
vaccine, but immunity is not assumed to be ab-
solute; they may still become infected at a re-
duced rate of (1 — €), where € represents vac-
cine efficacy against infection. The exposed
class consists of individuals infected but not yet
infectious. Infectious individuals are capable of

je, i + 83"
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transmitting the disease to susceptible people.
Recovered individuals have acquired immunity
through vaccination, prior infection, or natural
resistance.

Disease transmission is modeled through a bilin-
ear mass-action term, Bsi, indicating that the
rate of new infections is proportional to the prod-
uct of susceptible and infectious individuals. The
model excludes environmental and vector-borne
transmission, assuming that spread occurs exclu-
sively via direct human-to-human contact. A ho-
mogeneous mixing assumption is applied,
whereby all individuals have an equal probabil-
ity of contacting one another. All parameters are
considered constant in time. Reinfection is as-
sumed to occur in constant rate. The compart-
mental structure of the model is illustrated in
Figure 1.

Figure 1: The flow diagram between compartments

Guided by this schematic and the assumptions
outlined above, the system of governing equa-
tions is formulated as follows:
s =A—fsi—as—us,
? = psi+ (1- e),Bv.l —ye — ue, (Eql
v=as—(1—¢e)pvi—ev—puv, )
i=ye—ki— i —ui,
T = €V + Ki — ur.
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Parameter Definitions
The parameters used in the model (Eq1) are sum-
marized in Table 1.
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Table 1: The summary of parameters

Sym- Description Source Value
bol
A Recruitment rate of susceptible individuals into the population As- 0.00971
sumed
B The rate at which infectious individuals transmit the disease to susceptible (24-26) [0.3, 0.5]
individuals
a Rate at which susceptible individuals are vaccinated and move into the Esti- 0.00325
vaccinated class mated
U Natural death rate, assumed equal across all compartments (14)  0.000016

€ Vaccine efficacy (€) represents the reduction in susceptibility to infection  (15-17) 0.75
among vaccinated individuals. It is assumed to be below average, reflect-
ing the greater affordability and availability of lower-priced, lower-effi-
cacy vaccines in Afghanistan.

Y The inverse of the mean latent period, determining the rate of progression (21) 0.33
from exposed to infectious
1) COVID-19-induced death rate of infectious individuals esti- 0.0025
mated
K Recovery rate of infectious individuals (22) 0.196

The parameter A represents the recruitment rate,
defined as the total inflow into the susceptible
class arising from natural births, immigration
into the country, the return of individuals who
lose infection-induced immunity, and the inflow
generated by vaccine inefficacy (i.e., vaccinated
individuals who do not acquire sufficient protec-
tion). For simplicity and model fitting, we as-
sume A =0.00971 . The contribution from
births is estimated using Afghanistan’s crude
birth rate in 2023, reported as 35.437 births per
1,000 population per year (13). This corre-
sponds to
32437 9.71 x 107> = 0.0000971
1000 x 365 T ’

the remaining portion of A accounting for the in-
flow generated by loss of immunity after recov-
ery, immigration into the country, and vaccine
inefficacy (i.e., vaccinated individuals who fail
to acquire adequate protection). The parameter u
corresponds to the natural death rate. In short-
term epidemic modeling, u is typically negligi-
ble because of its small magnitude relative to ep-
idemic-related rates. The natural daily death rate
(u) was estimated using national mortality statis-
tics. According to Macrotrends (14), the crude

death rate in Afghanistan is approximately 5.8
deaths per 1,000 population per year. Converting
this to a daily rate yields u =5.8/(1000 x
365) = 0.000016 per person per day.

Vaccine efficacy against infection is denoted by
€. For COVID-19 vaccines, reported efficacy
ranges from 70% to 95%, depending on vac-
cine type and circulating variants. For instance,
Pfizer-BioNTech (BNT162b2, mRNA) demon-
strated 95% efficacy (15), Moderna (MRNA-
1273, mRNA) showed similar results (16), while
Johnson & Johnson/Janssen (Ad26.COV2.S, ad-
enovirus vector) demonstrated about 67% effi-
cacy (17). Considering the reported vaccine effi-
cacy levels and Afghanistan’s limited economic
capacity, access to high-efficacy vaccines is less
likely due to their higher cost, while lower-effi-
cacy vaccines are more accessible and afforda-
ble. Therefore, the vaccine efficacy was set to
e = 0.75 to reflect this realistic scenario.

The incubation period is denoted by y and varies
across variants. The median incubation period
was approximately 5.1 days for the ancestral
Wuhan strain (18), 4 days for the Delta variant
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(19), and 3 days for Omicron BA.1 (20). Fol-
lowing (21), we adopt an average incubation pe-
riod of 3 days, corresponding to y = 1/3 =
0.33.

The average infectious period also differs across
variants. Based on (22), we assume a 7-day in-
fectious period, which implies a recovery rate of
Kk = 0.14 per day.

The disease-induced death rate, §, is determined
from the case fatality rate (CFR) and the average
infectious period. For instance, if the CFR is 1%
and the infectious period is approximately 7 days,
then § ~ 0.0014 per day. In more severe out-
breaks, higher values of § may occur (23). In
this study, however, § was estimated directly
from reported data (see subsection mortality
rate).

Analytical methods
Non-negativity Preservation and Boundedness
In the mathematical modeling of biological phe-
nomena, positivity and boundedness are funda-
mental properties. Without these, the model may
yield results that are biologically meaningless or
impractical for real-world interpretation.
Let the initial conditions of system (Eql) satisfy
s(0) =0, e(0)=0, v(0)
>0, i(0) (Eq2)
>0, r(0)=0,
and define the total population as
n(t) =s(t) +e(t) +v(t) +i(t) +r(t)
+ d(t).
Under these assumptions, the following proper-
ties hold for the solutions of system (Eq1).
Theorem 1 (Positive invariance of the feasible
region). For the system (Eql), the feasible re-

gion Q is defined as Q={(s,e,v,i,r)e
R3:0<n S%} Then, the region Q is posi-

tively invariant under the flow induced by the

system (Eql); that is, any solution with initial

condition in Q remains in Q for all t > 0.

Proof. From (Eq1), one can easily see that
n=A-—un-—Ji.
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In the absence of disease-induced mortality (6 =

0), the above equation simplifies to
n+un=A

which is a linear ordinary differential equation

and under the initial condition n(0) = n, can be

easily solved as

A
n(t) = o + nge ML,
We see that n(t) - % ast — oo. Thus, for any

t=>0 we have 0 <n(t) < % Therefore, the

system (Eql), is biologically meaningful.
Theorem 2. The solutions of system (Eql) with
the initial condition (Eg2) is non-negative for
any t > 0. Additionally, the solutions are uni-
formly ultimately bounded

Proof
To prove the positivity of the solutions of the
system we use contradiction approach. Let the
positivity fails, then at least one variable be-
comes nonpositive at some time t* > 0. For the
first equation of the system, assume s(t*) =0
and s(t*) < 0. Then:
s=A—-si—(a+pu)s

at time t* becomes as s(t*) = A, which is obvi-
ously greater than 0. Thus the assumption must
not be true and therefore we must have s(t) = 0
forany t > 0.
Now, we turn our attention to the second equa-
tion. For some time £ > 0, let e(f) = 0 and
é(t) < 0. Then, at time £, we get

é=[Bs+ (1 —-¢€)Bv]i >0,
when s(t) > 0, v(t) >0, and i(f£) > 0. This
contradicts the assumption, thus e(t) = 0 must
holds forany t = 0.
The positivity of all other variables can be ob-
tained similarly. Therefore, all solutions of sys-
tem (Eq1) are non-negative for all t > 0.

We knowthatnsﬁ, andn=s+e+v+i+

r, thus each solutions are bounded. This com-
pletes the proof.
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Disease-Free Equilibrium (DFE)
In compartmental epidemiological modeling, the
disease-free equilibrium (DFE) represents the
state in which the infection is entirely absent
from the population. Formally, this condition is
expressed as
e(t)=0, i(t)=0.
At this equilibrium, the population may consist
of susceptible, vaccinated, or recovered individ-
uals, but no one remains exposed or infectious.
Substituting these conditions into system (Eql)
gives the equilibrium values
A al\

N CEINICEan)
_ eai

S u(a+ e+ p)
Thus, the DFE point is defined as

§s=—,
a+u

(A 0 al 0 eai )
a+p C(at+we+p) Tpla+pw)(e+p)

The basic reproduction number
To derive meaningful public health insights
from system (Eql), it is necessary to compute
the basic reproduction number, denoted by R,.
This threshold parameter measures the average
number of secondary cases generated by a single
infectious individual in a fully susceptible popu-
lation. Its calculation commonly relies on the
Next Generation Matrix (NGM) method (27),
where R, is given by the spectral radius (domi-
nant eigenvalue) of the product
FV-1,
where the matrices F and V represent the rates
of new infections and transitions between com-
partments, respectively, and is obtained as
si+ (1 —¢e)pvi
T RO T
_ ( v +we )
(k+6+wi—ye)
Thus, F and V are defined as their Jacobian ma-
trices and is obtained as:
_ (0 Bs+(1—-¢€)pv
F=( . . ), v

_(y+u 0 )
"\ -y k+6+u)

After applying standard linear algebra tech-
niques, the matrix is obtained as:

Byls+ (1 —-¢e)v] Bs+ (1 —¢e)pv
Fv-1t=

+wE+d6+upn K+6+u
0 0
Thus, the BRN is expressed as:
Ro
_ ByA
(@a+w@+m+35+u (Eg3)
(1—-¢e)BayA

Tt e 0o O+
The calculated basic reproduction number R,

quantifies the average number of secondary
cases generated by a single infected individual in
a completely susceptible population. The first
term represents transmission among unvac-
cinated individuals, while the second accounts
for breakthrough infections among vaccinated
individuals with partial immunity. A value of
R, > 1 implies that the infection can persist and
spread in the population, whereas R, < 1 indi-
cates that the disease will eventually die out.
Theorem 3. The DFE is locally asymptotically
stable if R, < 1.

Proof
The idea is to linearize the system (Eq1) around
the DFE point using Jacobin matrix. Let F;,i =
1, ...,6 denote the right side and M be the Jaco-
bin of the system. Therefore

M

—Bi—a—pu 0 0 —Bs 0
( Bi -+ A-epi Bs+(1—-e)pv 0 \
= a 0 —-(1-e)pi—(e+pn —-(1-¢e)pv 0 |
\ 0 ¥ 0 —(c+ 6+ 1) 0/
0 0 € K —U

Now, the matrix M at the DFE point is denoted
as Mppg and is defined as

MDFE

(—a—u 0 0 __p 0\
a+u

BA (1—-¢€)Ba

I e A CE ANl I
| o esn GO
“ : @+me+mn

\ 0 v 0 —(k+8+p) 0

0 0 € K —u

The eigenvalues of matrix My, are —(a + u),
—(€ + u), —u, and the eigenvalues of the 2 x 2
matrix
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( -r+m 14
BA N (1—-¢e)pah

atn @rmerm KHOTH
Since three of eigenvalues are negative, there-
fore, in order the eigenvalues of the matrix have
negative real parts, the above 2 x 2 matrix must
have negative trace and positive determinant
(28). The negativity of the trace is obvious. For
the determinant to be positive we get

¥+ W+ +p) > ByA (1 —e€)BayA

Then, we get

1
S ByA
(@+w)y+w(e+d+u
N (1—=¢e)BayA _
(@+wEe+wy+uwc+6+p)
Thus, the DFE is locally asymptotically stable if
R, is strictly less than one. O

Ro.

Results
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Estimation of the Daily Vaccination Rate
Let C; denote the cumulative number of vac-
cinated individuals up to day t, and let N repre-
sent the total population. The daily new vaccina-
tions are computed as
AC,=C,—Cpq, t=2,..,T, AC;=C,.
If cumulative data are missing for some days, we
apply linear interpolation to estimate the miss-
ing values, avoiding artificial spikes due to batch
reporting.
The per-capita daily vaccination rate is then cal-
culated as
AC,

ay = N

To reduce the impact of reporting noise and ir-

regularities, we smooth a; using a 7-day moving

average:
)

ar == a;.

t 7 l
i=t-3

Finally, a single average vaccination rate over
the observation period is obtained as

T
=72
a—T as,
t=1

which can be used as a constant vaccination rate
in compartmental models. Based on the data re-
ported in (29), the average daily vaccination rate
was estimated to be 0.00325 (Figure 2).
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COVID-19 Vacomation Data Processing

——

Figure 2: Graph of reported daily cumulative vaccinations, interpolated data, daily per-capita vaccination rate, 7-day
smoothed average, and overall average

Mortality rate per day

We estimated the daily mortality rate using re-
ported confirmed cases (C;) and deaths (D,) at
day t (t =1, ...,T). The number of active infec-
tions was defined as

t t
Iy = Z C; — Z Dy,
s=t—-L+1 s=t—L+1

with L = 14 days (30), reflecting the average in-
fectious period. The day-specific mortality rate
was then given by

5 = 2

t — It’

while the overall period-average mortality rate
was

t=1D
Ti=1le
To reduce reporting noise and weekly fluctua-

tions, we replaced C; and D, with their 7-day
centered rolling averages,
3

3
~ 1 ~ 1
Cr = 7 z Ciks D = 7 z Diikr

k=—3 k=—3
and further smoothed the sequence &, itself us-
ing the same procedure, yielding a clean trajec-
tory of mortality dynamics. Accordingly, the
mortality rate was estimated as § = 0.0025
(Figure 3).

5 =
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Active Infections and Smoothed Daily Deaths

— Active infections &
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Figure 3: The daily reported rate

Sensitivity analysis
In order to understand the impact of each param-
eter on the dynamics of the system (Eql), we
need to perform a sensitivity analysis. The anal-
ysis tells us how much changes in parameter can
considerably impact the outcome. Thus, we can
decide to focus on which in order to control the
disease. For this purpose, we use the normalized
formula
p 0R,

PT Ry Op’
The idea is such that we let one parameter to
change and keep all others constant. After run-
ning a sensitivity analysis on (Eg3), we come to
the conclusion that parameters 3, A, «, and k
have the highest impact, respectively. On the
other hand, however, we noticed that parameters
6, 1, €,and y have lowest impact on the system,
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respectively (Figure 4). We must note that a pos-
itive sensitivity index means that by increasing
(decreasing) that parameter the amount of R, in-
creases (decreases), while negative sign means
that increasing (decreasing) that parameter the
amount of R, decreases (increases). According
to the sensitivity indices presented in Table 2,
the parameters f and A each have a sensitivity
index of 1, indicating that x % change in either
parameter results in a corresponding x %
change in R,. Conversely, the parameter o has a
sensitivity index of -0.994, meaning that an x %
increase (or decrease) in a leads to an approxi-
mate 0.994x % decrease (or increase) in the
value of R,,.

The sensitivity index of each parameter is de-
picted in figure 4. The baseline values are pre-
sented in Table 2.
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Elasticity (Normalized Sensitivity) of RO at baseline

beta

Lambda 1

alpha

delta

g

epsilon

gamma

B v v v
-1.00 -0.75 -0.50 -0.25

el _
|
|

- v v . v
0.00 0.25 0.50 0.75 1.00
Elasticty (S_p)

Figure 4: The sensitivity analysis bar of R,

Table 2: The baseline and sensitivity index of parameters

Parameter B Y A

u K () €

Baseline value 0.5 0.33
Sensitivity index | 1 —0.000048 1

0.00971 0.00325 0.000016  0.196
—0.994

0.0025 0.75

—0.005 —0.9873 —-0.0126 —0.0043

Discussion

There are two types of parameters in the model:
controllable and non-controllable. Among them,
B, a, and € can be controlled. For example,
can be reduced through mask-wearing, avoiding
crowded gatherings, and increasing public
awareness. The parameter a can be raised by ex-
panding vaccination campaigns, while € can be
improved by administering high-efficacy vac-
cines.

Increasing vaccination rates in Afghanistan is
feasible but challenging. Limited cold-chain ca-
pacity, misinformation, and restricted access in
insecure areas hinder large-scale campaigns.
However, urban centers and the existing health
facility network can scale distribution if supplies
are stable. Community-based outreach—espe-
cially through local leaders and mobile vaccina-
tion teams—has proven effective in improving
acceptance. With continued donor support and
targeted delivery strategies, higher vaccination

coverage remains achievable despite structural
constraints.

According to sensitivity analysis section (Fig-
ure 4), the parameters § and a have the greatest
impact on the system, whereas € has the least in-
fluence. Therefore, interventions should primar-
ily target reducing g and increasing «a, as focus-
ing on € would yield comparatively limited re-
sults. In other words, rather than prioritizing the
purchase of high-efficacy vaccines, it may be
more effective to vaccinate a larger proportion
of the population with lower-efficacy vaccines.

Impact of Vaccination

To evaluate the role of vaccination in mitigating
the COVID-19 epidemic, we considered three
simulation scenarios: (i) no vaccination (base-
line), (ii) vaccination at the observed average
daily coverage, and (iii) an accelerated campaign
with twice the observed coverage.

In all cases, vaccine efficacy was fixed at € =
0.75, and vaccine doses were assumed to be dis-
tributed uniformly across all age groups. The
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simulation outcomes, shown in Figure5,
demonstrate that vaccination substantially re-
duced peak prevalence, delayed the timing of the
epidemic peak, and decreased both total cases

and deaths. Among the scenarios considered, the
accelerated campaign produced the most signif-
icant benefits.

040 4

Q.35 4

0.30

o o
~ »
1 o

"

[=]
N
1

Proportion of population

0.05 4

0.00

e 1%
50 100

w nfectiousi{no vaccination)
Infactious [real vaccination)
nation rate doublea)

s nfactious{vacc

v - -
200 250 300 B0

Days

Figure 5: Comparison of different vaccination rates on COVID-19 dynamics (The graph is obtained by numerically
solving the system using the Runge-Kutta method)

Policy Implications

Model projections indicate that doubling the cur-
rent vaccination rate would reduce infections by
more than 15% . Furthermore, an accelerated
vaccination program would shift the epidemic
peak to a later date, as illustrated in Figure 5.
Following the herd immunity framework de-
scribed in (28), the minimum proportion p of
susceptible individuals that must be vaccinated
to interrupt transmission is given by

1
>1-—=0.867.
p Rq
This implies that approximately 86% of the

population must be vaccinated to achieve long-
term epidemic control.

Strengths and Limitations

A key strength of this study is the application of
a mathematically rigorous framework to capture
COVID-19 dynamics, with explicit incorpora-
tion of vaccination data. Additionally, the sensi-
tivity analysis provided valuable insights into
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the most influential parameters, offering guid-
ance for targeted interventions.

Nonetheless, several limitations should be
acknowledged. First, the assumption of homoge-
neous mixing may oversimplify real-world con-
tact patterns, given variations in population den-
sity, cultural practices, and mobility across Af-
ghanistan. Second, parameter estimates were de-
rived from reported data, which may be incom-
plete due to underreporting, limited testing, or
delays in data collection. Third, the model did
not account for waning immunity, reinfections,
or the emergence of new variants with higher
transmissibility or immune escape. Each of these
factors could significantly affect projections.
Furthermore, the vaccination rate was treated as
constant, whereas in reality it fluctuates depend-
ing on vaccine supply and political stability.

Future Directions
Future research should extend the model by in-
corporating age structure, particularly relevant
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for Afghanistan’s young population, as well as
stochastic effects to capture uncertainties in
small populations or localized outbreaks. Ac-
counting for waning immunity (assumed con-
stant here) and booster vaccination strategies
would also improve realism. Incorporating spa-
tial heterogeneity could refine predictions by re-
flecting regional disparities in vaccination cov-
erage, healthcare access, and population density.
Moreover, integrating behavioral dynamics—
such as vaccine hesitancy and adherence to non-
pharmaceutical interventions (NPIs)—would
enhance the policy relevance of the model.
Reported case data suggest a possible link be-
tween COVID-19 transmission and seasonality,
with major waves often beginning in the early
summer (Figure 3). This implies that transmis-
sion rates may be partially seasonal. However,
the current model does not capture seasonality
and cannot predict epidemic waves, which rep-
resents another limitation to be addressed in fu-
ture work.

Conclusion

This study employed a compartmental model to
analyze the dynamics of COVID-19 in Afghani-
stan, with a particular focus on the role of vac-
cination. Sensitivity analysis revealed that trans-
mission rate (B) and vaccination coverage («)
are the most influential parameters, while vac-
cine efficacy (€) has a comparatively smaller im-
pact. These findings suggest that public health
interventions should prioritize reducing trans-
mission through non-pharmaceutical measures
and expanding vaccine coverage, even if the
available vaccines are of moderate efficacy.

Simulation results further demonstrated that vac-
cination substantially reduces peak prevalence,
delays the epidemic peak, and lowers overall
morbidity and mortality, with accelerated cam-
paigns producing the greatest benefits. Policy
projections indicate that approximately 86% of
the population must be vaccinated to achieve

herd immunity, underscoring the urgent need to
strengthen vaccination programs.

Policymakers should prioritize vaccinating as
many individuals as possible, even if only lower-
efficacy vaccines are available. The target
should be set at vaccinating approximately 86%
of the population; although achieving this level
may be practically challenging, approaching this
threshold would still produce a substantial re-
duction in disease transmission and a meaning-
ful public health impact.

Despite its strengths, including the use of real
vaccination data and rigorous sensitivity analy-
sis, the model has limitations, such as the as-
sumption of homogeneous mixing, constant vac-
cination rates, and emerging variants. These fac-
tors highlight the need for more refined models
that incorporate age structure, spatial heteroge-
neity, behavioral dynamics, and seasonality.
Overall, our results emphasize that timely ex-
pansion of vaccination coverage, supported by
sustained non-pharmaceutical interventions, is
the most effective strategy for long-term control
of COVID-19 in Afghanistan. Future work
should address the identified limitations to pro-
vide more accurate guidance for policymakers in
preparing for subsequent epidemic waves.
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