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Background: The COVID-19 pandemic posed significant challenges for public health 

systems globally, particularly in resource-limited settings such as Afghanistan. 

Limitations in diagnostic capacity, inconsistent data reporting, and low vaccination 

coverage hindered timely public health responses. To support real-time decision-

making, accurate and adaptive modeling frameworks are essential. 

Methods: This study presents a hybrid modeling approach that integrates the classical 

SEIR-V (Susceptible–Exposed–Infectious–Recovered–Vaccinated) compartmental 

model with Dynamics-Informed Neural Networks (DINNs). The model embeds the 

SEIR-V system of differential equations into the loss function of a deep neural network 

to enable dynamic estimation of time-varying parameters. Epidemiological data from 

Feb 2020 to Apr 2024 were collected from multiple publicly available sources, including 

Worldometer, Our World in Data, the World Health Organization and the Johns Hopkins 

University COVID-19 repository. 

Results: The proposed DINNs-SEIRV model effectively reconstructed multiple 

epidemic waves and generated accurate forecasts of COVID-19 transmission dynamics 

in Afghanistan. The model achieved high predictive performance, particularly for the 

infectious (I) compartment, with a coefficient of determination R² = 0.9973. It also 

demonstrated strong capacity in capturing vaccination trends and maintaining 

robustness in the presence of incomplete or noisy data. 

Conclusion: The DINNs-SEIRV framework offers a powerful and flexible tool for 

modeling infectious disease dynamics in low-resource settings. Its ability to learn and 

update time-varying parameters in response to real-world data makes it valuable for 

informing public health strategy, forecasting outbreaks, and evaluating vaccination 

efforts in environments like Afghanistan. 

 

Keywords: COVID-19, SEIR-V model, Dynamics-informed neural networks, 

Afghanistan, Epidemic modeling 

 

Introduction 
 

The COVID-19 pandemic, which emerged 

in late 2019, has challenged global public 

health systems in ways not experienced for 

decades. Countries with fragile healthcare 

infrastructure, such as Afghanistan, have 

faced unique difficulties in containing the 

virus, reporting cases, and rolling out 

vaccination programs (1). Limited 

laboratory capacity, fragmented data 

reporting systems, social instability, and 
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constrained public health resources have 

exacerbated the crisis in Afghanistan. 

Multiple waves of infection have swept 

across the country since the first confirmed 

case in Feb 2020, yet inconsistent data 

availability and underreporting have 

hindered timely intervention planning (1). 

Mathematical models have long served as 

essential tools for analyzing infectious 

disease dynamics, evaluating public health 

policies, and guiding resource allocation 

during epidemics. Classical compartmental 

models—such as SIR (Susceptible–

Infectious–Recovered) and SEIR 

(Susceptible–Exposed–Infectious–

Recovered)—offer intuitive frameworks 

for representing transmission processes and 

estimating epidemiological parameters (2). 

However, these models traditionally 

assume constant parameters and 

homogeneous populations, limiting their 

capacity to reflect real-world complexities, 

especially in the presence of time-varying 

factors such as public compliance, policy 

shifts, and viral evolution (3). This 

limitation can be addressed by adopting 

linear parameter-varying (LPV) models 

that enable dynamic adjustment of key 

parameters over time (4). 

During the COVID-19 pandemic, many 

studies attempted to calibrate SEIR-type 

models using time series data from diverse 

countries, but the challenges of parameter 

identifiability, data noise, and behavioral 

variability often resulted in unreliable 

forecasts (5). Moreover, the integration of 

vaccination dynamics introduced additional 

complexity that classical models alone 

struggled to capture (6). 

To address these issues, researchers have 

proposed hybrid models that combine 

mechanistic structures with machine 

learning capabilities (7). Among them, 

Dynamics-Informed Neural Networks 

(DINNs) have emerged as a promising 

approach. DINNs incorporate known 

differential equations—such as those of 

SEIR or SEIR-V—into the training 

objective of deep neural networks. This 

hybridization allows for learning of time-

varying parameters while preserving 

epidemiological interpretability (8,9). 

Notably, DINNs have been used 

successfully in various contexts, including 

modeling COVID-19 transmission in China 

(10), Pakistan (11), and Malaysia (12), 

demonstrating superior forecasting 

accuracy compared to traditional models 

and even standalone machine learning 

approaches. 

The SEIR-V extension, which introduces a 

vaccinated compartment, enables more 

comprehensive modeling of immunization 

impacts, particularly important for low-

income countries where vaccination 

campaigns are variable and subject to 

socio-political factors (10). When 

embedded into a neural architecture, the 

SEIR-V system not only supports more 

realistic epidemic representations but also 

permits parameter adaptation in response to 

emerging patterns in the data. 

Building on these insights, this study 

proposes a SEIR-V-DINNs hybrid model to 

simulate and predict COVID-19 

transmission in Afghanistan. Our approach 

applies a data-driven framework grounded 

in epidemiological theory. By combining 

differential equations with neural learning 

mechanisms, the model adapts to the 

complex, nonstationary nature of the 

Afghan epidemic and supports more 

informed, real-time public health decision-

making. 

The SEIR-V extension, which introduces a 

vaccinated compartment, enables more 

comprehensive modeling of immunization 

impacts, particularly important for low-

income countries where vaccination 

campaigns are variable and subject to 

socio-political factors (10). When 

embedded into a neural architecture, the 

SEIR-V system not only supports more 

realistic epidemic representations but also 

permits parameter adaptation in response to 

emerging patterns in the data. 
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Materials and Methods 
 

Data Sources 

Epidemiological data for Afghanistan were 

collected from four publicly available 

sources: World meter (1), Our World in 

Data (13), the WHO (14), and Johns 

Hopkins CSSE (15). These databases 

provided time-series records of daily and 

cumulative confirmed cases, deaths, 

recoveries, and vaccination counts. World 

meter data were used up to Apr 13, 2024—

the final date of reporting on that platform. 

According to the official data at that time, 

Afghanistan had reported a total of 234,174 

confirmed cases, 7,996 deaths, and 211,080 

recoveries. 

 

Preprocessing Methods 

Given the challenges associated with data 

quality in Afghanistan including 

underreporting, limited testing capacity, 

and delayed reporting robust preprocessing 

was necessary to ensure the reliability of 

the modeling inputs. The following steps 

were undertaken to enhance data integrity: 

1. Handling missing values: Missing 

or inconsistent data entries were 

addressed using linear interpolation 

to maintain temporal continuity. 

2. Outlier detection and correction: 

The interquartile range (IQR) 

method was applied to identify 

outliers. Data points falling below 

𝑄
1

− 1.5 × 𝐼𝑄𝑅𝑄 or above 𝑄3 +

1.5 × 𝐼𝑄𝑅 were flagged as outliers. 

These values were replaced by 

averaging the values immediately 

adjacent in the time series, thereby 

minimizing artificial distortion 

while preserving trend continuity. 

3. Normalization: All numerical 

variables (e.g., case counts, deaths, 

vaccinations) were normalized to a 

[0, 1] scale using min-max 

normalization: 

a. 𝑥norm =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 

b. where 𝑥 is the original 

value, and min(𝑥), max(𝑥) 

represent the minimum and 

maximum values in the 

series, respectively. 

4. Smoothing: To remove short-term 

fluctuations and reporting 

irregularities (especially weekday-

weekend effects), a 7-day moving 

average filter was applied to the 

daily case and vaccination series. 

Following these preprocessing steps, the 

cleaned and scaled datasets were 

chronologically aligned and segmented into 

training and validation subsets for use in the 

DINNs model. Only reliable indicators—

such as cumulative confirmed infections, 

deaths, and vaccination doses—were 

retained to ensure accurate parameter 

estimation and model fidelity. Figure 1 

illustrates the comparative effect of 

preprocessing on raw versus smoothed data 

curves. 



             Movaheedi Z et al. Afghanistan Journal of Infectious Diseases. 2025 July 3(2): 177-192.                      180  

 

 
Figure 1: Reported versus smoothed data for cumulative cases, daily cases, and daily vaccinations. 

Black dots indicate raw data; green lines show 7-day moving averages 

 

The SEIR-V Compartmental Model 

Model Equations 

The SEIR-V model is an extension of the 

traditional SEIR framework, integrating 

vaccination dynamics to evaluate how 

immunization efforts influence disease 

transmission within a population. This 

model categorizes individuals into distinct 

groups based on their infection status: 

 Susceptible (S): Individuals at risk 

of contracting the disease. 

 Exposed (E): Those infected but 

not yet contagious. 

 Infectious (I): Individuals capable 

of transmitting the disease. 

 Recovered (R): People gained 

immunity after recovery. 

 Vaccinated (V): Individuals 

protected by vaccination, reducing 

their susceptibility to infection. 

By including the vaccinated compartment, 

the SEIR-V model enables policymakers 

and researchers to analyze the effectiveness 

of vaccination campaigns in curbing 

disease spread. Recent studies have applied 

this model to investigate the role of 

vaccination in mitigating COVID-19 

transmission. The system is mathematically 

described by the differential equations in 

[1]. 
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�̇� = −
β𝑆𝐼

𝑁
− ε𝑆           

�̇� =
β𝑆𝐼

𝑁
+

αβ𝑉𝐼

𝑁
− σ𝐸

�̇� = γ𝐼                         

�̇� = ε𝑆 −
αβ𝑉𝐼

𝑁
.           

                   [1] 

In [1] the total population 𝑁  =  𝑆  +  𝐸  +
 𝐼  +  𝑅  +  𝑉 is governed by key 

epidemiological parameters: the 

transmission rate β, incubation rate σ, 

recovery rate γ, and vaccination rate ε. The 

model accounts for waning immunity 

through vaccinated individuals V returning 

to the susceptible compartment S at rate ε, 

enabling analysis of both primary 

vaccination and booster dose effects. As 

illustrated in Figure 1, the system captures 

disease progression S→E→I→R alongside 

vaccination pathways S → V → S, 

demonstrating how immunization reduces 

transmission potential by both decreasing 

the susceptible pool and lowering the 

effective 
𝑆

𝑁
 ratio. This structure provides 

critical insights for evaluating short-term 

and long-term vaccination strategies 

against infectious diseases. 

Figure 2 shows the SEIR-V model 

schematic which is showing transitions 

between Susceptible S, Exposed E, 

Infectious I, Recovered R, and Vaccinated 

V compartments, with arrows indicating 

disease transmission β, progression σ, 

recovery γ, and vaccination ε pathways. 

 

 
 

Figure 2: SEIR-V model schematic chart 

 

Parameters for Afghanistan 
To parameterize the SEIR-V model for the 

Afghanistan case study, we utilized the 

preprocessed epidemiological time-series 

data described in the Data Sources section. 

Given Afghanistan’s status as a low-

resource country with limited diagnostic 

capacity, low vaccination coverage, and 

substantial underreporting, model 

parameterization required the integration of 

empirical data with contextual 

epidemiological assumptions from existing 

literature. Particular attention was given to 

smoothing and validating reported case, 

death, and vaccination trends to reduce the 

impact of data irregularities. The final 

calibrated parameters and initial 

compartment values used in the SEIR-V-

DINNs model are summarized in Tables 1 

and 2. 
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Table 1: Calibrated SEIR-V Model Parameters for Afghanistan 

 

Parameter Symbol Value Description Source 

Transmission rate β 0.30 Probability of disease 

transmission per contact 

Assumed 

Incubation rate σ 0.0870 Rate at which exposed individuals 

become infectious 

Hethcote (2) 

Recovery rate γ 0.0686 Rate at which infectious 

individuals recover 

Giordano et al. (3) 

Natural birth/death 

rate 
μ 4.89 × 10−5 Approximate demographic 

turnover (≈1.78% annually) 

UN Population 

Division (16) 

Vaccination rate ϵ 0.0001 Daily vaccination rate in low-

coverage context 

Assumed 

Vaccine efficacy 

modifier 
α 0.52 Relative effectiveness of the 

vaccine 

Watson et al. (10) 

Waning immunity 

rate 
ω 0.001 Rate of loss of immunity among 

vaccinated individuals 

Assumed 

 

Initial Conditions (Normalized) 

Initial conditions are normalized with 

respect to the estimated population of 40.4 

million: 

These parameters reflect the real-world 

context of Afghanistan’s COVID-19 

epidemic. The values allow the SEIR-V 

framework to simulate epidemic 

trajectories while accounting for time-

varying policy impact, population behavior, 

and immunity dynamics in a highly 

uncertain environment. 

 
Table 2: Normalized initial conditions of SEIR-V compartments as of April 13, 2024 

 

Compartment Symbol Normalized Value Description 

Susceptible S(0) 0.98500 Majority of population still unexposed 

Exposed E(0) 0.00500 Latent, pre-infectious individuals 

Infectious I(0) 0.00037 Approx. 15,098 active cases (out of 40.4M) 

Recovered R(0) 0.00523 Based on 211,080 recoveries 

Vaccinated V(0) 0.00000 Assumed negligible due to reporting gaps 

 

DINNs Framework 
Network Architecture 
Our implementation follows the Dynamics-

Informed Neural Networks (DINNs) 

framework as described in Cheng et al. )8(. 

This hybrid modeling approach integrates 

known epidemiological dynamics into the 

training process of deep neural networks 

(17). Specifically, the network is designed 

to jointly estimate both state variables 

(𝑆, 𝐸, 𝐼, 𝑅, 𝑉) and time-varying parameters 

(e.g., 𝛽(𝑡), 𝜀(𝑡), etc.). 

The architecture comprises two neural sub-

networks: 

1. One sub-network estimates time-

dependent parameters, 

2. The other approximates 

compartmental trajectories over 

time. 

Each sub-network includes five hidden 

layers with 50 neurons per layer. The ReLU 

activation function is applied in hidden 

layers, and the Softplus activation function 

is used in the output layer to ensure non-

negativity of output (20). 

As illustrated in Figure 3, the full network 

includes an input layer, multiple fully 

connected hidden layers, and an output 

layer. Neuron activations are propagated 

using trainable weight matrices and biases. 

Each sub-network operates over discrete 

time steps 𝑡𝑛, estimating both observable 

and latent states. 
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Figure 3: A schematic of the DINNs shows how the model jointly fits epidemiological data and 

solves the SEIR-V system of ODEs. It employs two deep neural networks—one for parameter 

estimation and one for state approximation optimized by minimizing mean squared. 

 

This architecture enables robust data-driven 

forecasting while preserving the 

interpretability and structure of the 

underlying SEIR-V epidemic model. 

 

Loss Function 

The DINNs model is trained using a hybrid 

loss function composed of two terms: 

𝐿t = 𝐿m + 𝐿d [2] 
1) Data Loss 

The data loss term measures the deviation 

between network predictions and real-

world observations for daily infections and 

vaccinations 

𝐿d = 𝑀𝑆𝐸 (𝐼n 𝐷𝑁𝑁
(𝑡), 𝐼n (𝑡)) + 𝑀𝑆𝐸 (𝑉n 𝐷𝑁𝑁

(𝑡), 𝑉n (𝑡)) [3] 

 

This loss ensures the network learns from 

epidemiological trends in reported data. 

 

2) Model Loss 

The model loss enforces compliance with 

the SEIR-V dynamic equations: 
 

𝑑𝑆𝐷𝑁𝑁(𝑡)

𝑑𝑡
= −𝛽𝐷𝑁𝑁(𝑡)

𝑆𝐷𝑁𝑁(𝑡)𝐼𝐷𝑁𝑁(𝑡)

𝑁
− 𝜀𝐷𝑁𝑁(𝑡)𝑆𝐷𝑁𝑁(𝑡)                                                              

   
𝑑𝐸𝐷𝑁𝑁(𝑡)

𝑑𝑡
= 𝛽𝐷𝑁𝑁(𝑡)

𝑆𝐷𝑁𝑁(𝑡)𝐼𝐷𝑁𝑁(𝑡)

𝑁
+ 𝛼𝐷𝑁𝑁(𝑡)𝛽𝐷𝑁𝑁(𝑡)

𝑉𝐷𝑁𝑁(𝑡)𝐼𝐷𝑁𝑁(𝑡)

𝑁
− 𝜎𝐷𝑁𝑁(𝑡)𝐸𝐷𝑁𝑁(𝑡)

𝑑𝑅𝐷𝑁𝑁(𝑡)

𝑑𝑡
= 𝛾𝐷𝑁𝑁(𝑡)𝐼𝐷𝑁𝑁(𝑡)                                                                                                                      

𝑑𝑉𝐷𝑁𝑁(𝑡)

𝑑𝑡
= 𝜀𝐷𝑁𝑁(𝑡)𝑆𝐷𝑁𝑁(𝑡) − 𝛼𝐷𝑁𝑁(𝑡)𝛽𝐷𝑁𝑁(𝑡)

𝑉𝐷𝑁𝑁(𝑡)𝐼𝐷𝑁𝑁(𝑡)

𝑁
                                                 

 

These equations are embedded into the loss function by penalizing their residuals: 
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𝐿m = ∑  

𝑡

  ((
𝑑𝑆DNN(𝑡)

𝑑𝑡
+ 𝛽DNN(𝑡)

𝑆DNN(𝑡)𝐼DNN(𝑡)

𝑁
+ 𝜀𝐷𝑁𝑁(𝑡)𝑆𝐷𝑁𝑁(𝑡))

2

 + ⋯

+ (
𝑑𝑉DNN(𝑡)

𝑑𝑡
− 𝜀𝐷𝑁𝑁(𝑡)𝑆𝐷𝑁𝑁(𝑡) + 𝛼𝐷𝑁𝑁(𝑡)𝛽𝐷𝑁𝑁(𝑡)

𝑉𝐷𝑁𝑁(𝑡)𝐼𝐷𝑁𝑁(𝑡)

𝑁
)

2

) [4]

 

 

3)  Full Compartmental Fit Loss To ensure agreement between predicted 

and observed compartment values across 

all states, we also define: 
 

𝐿(𝜃) = ∑  

𝑇

𝑡=1

  [(𝑆o(𝑡) − 𝑆DNN(𝑡))
2

+ (𝐸o(𝑡) − 𝐸DNN(𝑡))
2

+ (𝐼o(𝑡) − 𝐼DNN(𝑡))
2

+(𝑅o(𝑡) − 𝑅DNN(𝑡))
2

+ (𝑉o(𝑡) − 𝑉DNN(𝑡))
2

] [5]

 

 

Here, 𝜃 is the full set of learnable 

parameters, and 𝑡 spans the time series. 

This term aligns model predictions with 

actual epidemic trajectories, 

complementing the physics-based 

constraints. 

This combination of data-driven and 

equation-informed losses represents a core 

strength of the DINNs framework and 

aligns with recent developments in 

Physics-Informed Neural Networks 

(PINNs) applied to epidemic modeling (22, 

23). 

 

1.1 Model Training and 

Implementation 
The SEIR-V-DINNs model was 

implemented using Python 3.10 in 

conjunction with the TensorFlow 

framework. The neural network 

architecture consisted of five fully 

connected hidden layers, each containing 

50 neurons. The ReLU activation function 

was used in the hidden layers to capture 

nonlinear transformations, while the 

Softplus activation function was applied at 

the output layer to ensure non-negative 

predictions (21). 

Training was performed using the Adam 

optimizer, with an initial learning rate of 

0.001. To promote convergence and reduce 

the risk of overfitting, a learning rate decay 

of 5% was applied every 2000 epochs, and 

the model was trained for a total of 10,000 

epochs. The entire training process required 

approximately 7 min on standard 

computing hardware. 

The loss function minimized during 

training consisted of two primary 

components: 

(i) a data loss term based on the Mean 

Squared Error (MSE) between predicted 

and observed values for daily infections and 

vaccinations, and 

(ii) a physics-based loss derived from the 

residuals of the SEIR-V differential 

equations, ensuring that predicted 

compartmental trajectories remained 

faithful to known epidemic dynamics (21, 

23). 

The initial conditions for all 

compartments—Susceptible, Exposed, 

Infectious, Recovered, and Vaccinated—

were derived from the preprocessed 

epidemiological data for Afghanistan, as 

described before. These values were 

normalized with respect to the estimated 

total population and adjusted to reflect the 

realities of underreporting and low 

vaccination coverage. 

During training, the model learned to 

jointly estimate compartment values and 
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time-varying parameters, such as 

transmission rate (𝛽), recovery rate (𝛾), 

incubation rate (𝜎), and vaccination rate 

(𝜀). This dynamic fitting allowed the model 

to reflect the evolving nature of the 

outbreak and respond to changes in public 

behavior and intervention policies. 

Once trained, the model was used to 

forecast the progression of the COVID-19 

epidemic in Afghanistan. Forecasts 

included daily new infections, vaccination 

uptake trends, and compartmental 

transitions over time. These projections 

provide critical insights for real-time public 

health planning and resource allocation, 

especially in low-resource settings where 

timely data and intervention strategies are 

vital (23). 

Recent studies support the utility of such 

hybrid models that integrate mechanistic 

epidemiological knowledge with deep 

learning. Notably, similar frameworks have 

been employed to infer the timing and 

intensity of public health interventions 

directly from epidemic data, thereby 

enhancing the interpretability and policy 

relevance of forecasts (23). 

 

Evaluation Metrics  
To quantitatively evaluate the performance 

of the proposed DINNs method, five 

metrics were employed: mean absolute 

error (MAE), mean squared error (MSE), 

root mean squared error (RMSE), mean 

absolute percentage error (MAPE), and the 

coefficient of determination (R²). These 

metrics offer comprehensive insight into 

prediction accuracy across SEIR-V 

compartments. 

The following equations were used: 

𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

  |𝑦𝑖 − �̂�𝑖| [6]

𝑀𝑆𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − �̂�𝑖)
2 [7]

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − �̂�𝑖)2 [8]

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑  

𝑛

𝑖=1

  |
𝑦𝑖 − �̂�𝑖

𝑦𝑖
| [9]

𝑅2 = 1 −
∑  𝑛

𝑖=1   (𝑦𝑖 − �̂�𝑖)
2

∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦‾)2

[10]

 

 

Here, yI and �̂�𝑖 denote the observed and 

predicted values, respectively, and 𝑛 refers 

to the number of data points used in the 

analysis. The metrics MAE, MSE, RMSE, 

MAPE, and R2 are computed for both daily 

new infections and daily vaccination data.  

 

 

Results and Model Evaluation 

Forecast Accuracy 

Figure 4 Fitted curves for daily new 

COVID-19 infections and vaccinations in 

Afghanistan. 

The solid black dots represent actual data; 

the dashed red lines indicate model 

predictions. The close alignment 
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demonstrates the model’s high fidelity in 

capturing observed trends. 

 

 
Figure 4: Presents the fitted curves for daily new infections and daily vaccination data. In each 

subplot, the actual reported data are shown, while the dotted line represents the model's fitted output. 

This comparison demonstrates the model’s ability to accurate 

 

Error Metrics Summary 
Table 3 summarizes the main 

epidemiological parameters used in the 

SEIR-V and DINNs model, including their 

values and sources. These parameters were 

either derived from the literature or 

estimated during model training. 

 
 

Table 3: Parameters used in the SEIR-V and DINNs model 

 

Parameter Description Value Source 

α Rate of transition from exposed to infectious 1/3 Hethcote (2) 

γ Recovery rate of infectious individuals 1/10 Giordano et al. (3) 

σ Exposure-to-infection rate 0.1781 Worldometer (1) 

ε Vaccination rate Fitted OWID (13) 

β Transmission rate Fitted This study 

1/c Vaccine onset period 14 d WHO, Watson et al. (14, 10) 

1/α Incubation period 3.4 d Cheng et al. (8) 

Note: Parameter values in table 3 were learned during training and may differ from the initial 

assumptions in Table 1. 
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Results in Table 4 confirm the high 

accuracy of the model, especially in the 

infectious (I) and vaccinated (V) 

compartments. The higher error in the 

susceptible group (S) is likely due to 

behavioral and policy-related factors that 

affect population immunity. 

 
Table 4: Evaluation metrics across SEIR-V compartments 

 

Compartment MAE MAPE (%) RMSE MSE R² 

S 0.3087 1.50 0.3738 0.1397 0.8389 

I 0.0085 0.12 0.0118 0.0001 0.9973 

V 0.0084 0.16 0.0129 0.0001 0.9971 

 

Figure 5 Scatter plots comparing predicted 

vs. actual values for infectious (I) and 

vaccinated (V) compartments. 

The high 𝑅2 values confirm strong 

predictive performance.  

 

 
Figure 5: Scatter plots comparing predicted vs. actual values for infectious (I) and vaccinated (V) 

compartments 

 

Figure 5 illustrates scatter plots comparing 

the predicted values against the actual 

observations for the infectious (𝑰) and 

vaccinated (𝑉) compartments. Black dots 

denote the observed data points, while the 

solid red line represents the ideal reference 

where predicted values perfectly align with 

actual outcomes. The high 𝑅2 scores 

obtained for both compartments indicate a 

strong correlation and confirm the model’s 

capability in accurately capturing real-

world epidemiological trends. 

Width and Depth Comparison 
To assess the impact of neural network 

architecture on performance, Table 5 

compares error metrics across different 

network widths and depths, highlighting the 

configuration that achieved optimal 

accuracy. 
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Table 5: Error metrics for various network widths and depths 

 

Width Depth = 5 Depth = 10 Depth = 15 

30 8.19×10⁻⁴ 4.36×10⁻⁴ 1.06×10⁻³ 

40 8.86×10⁻⁴ 3.24×10⁻⁴ 3.21×10⁻⁴ 

50 3.06×10⁻⁴ 3.44×10⁻⁴ 3.04×10⁻⁴ 

 

Deeper and wider networks yield lower 

error values, with the best performance at 

width 50 and depth 5. 

 

 

Loss Convergence 

Figure 6 Loss curve over 10,000 training 

epochs. The smooth convergence and 

plateau confirm stable training and optimal 

parameter learning. 

 

 
Figure 6: The evolution of the loss value throughout the training of the DINNs model. 

 

Computational Complexity and Sensitivity 

Analysis 

Comparison with Traditional Models 
Table 6 presents a comparison of 

computational costs between the proposed 

DINNs framework and a traditional 

compartmental model, including training 

time, memory usage, and inference 

efficiency. 

 
 

Table 6: Computational cost of DINNs vs. traditional model 

 

Metric DINNs Traditional 

Training Time (s) 431.78 0.10 

Memory Usage (MB) 255.31 107.34 

Inference Time (s) 0.0021 0.0023 

 

Although more resource-intensive during 

training, DINNs offer competitive 

inference efficiency and flexibility. 

 

Resource Usage 
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The results indicate that DINNs are scalable 

and maintain accuracy even with increasing 

model size. Their ability to fit time-varying 

parameters makes them suitable for 

complex epidemics like COVID-19 in 

Afghanistan. 

 

 

 

 

Sensitivity to Parameters 

In Figure 7, the sensitivity of Model [1] 

with outputs 𝛼, 𝛾, and 𝜎 is evaluated. Small 

perturbations in these parameters lead to 

notable changes in model performance, 

emphasizing the importance of precise 

calibration. 

From an epidemiological standpoint: 

1. α reflects immunity waning, 

2. 𝛾 governs recovery, 

3. 𝜎 controls incubation latency. 

These factors critically shape outbreak 

dynamics, particularly in low-coverage 

settings. 

 

 
Figure 7: The figure illustrates the influence of variations in 𝛼, 𝛾, and 𝜎 on the model’s output, 

highlighting the degree to which changes in these parameters affect predictive performance. 

 

Discussion 
 

The predictive performance of the SEIR-V-

DINNs model reveals that dynamics-

informed deep learning approaches can 

achieve high accuracy in modeling 

infectious diseases, even under significant 

data limitations such as those found in 

Afghanistan. Compared to conventional 

parameter estimation techniques, the 

DINNs framework demonstrated superior 

adaptability to the fluctuating patterns of 

COVID-19 transmission and vaccination 

trends. These findings are consistent with 

previous studies (e.g., Cheng et al. (8); 

Watson et al. (10)), yet this study uniquely 

applies the method using real-world data 

from Afghanistan, offering context-specific 

insights. 
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A major strength of the proposed approach 

is its capacity to accurately reconstruct 

multi-wave epidemic patterns without the 

need for manual parameter adjustments. 

This is facilitated by the dynamic parameter 

estimation enabled through neural networks 

and compartment-specific loss functions 

(4), which improve fitting precision despite 

missing or noisy data. 

However, several limitations remain. First, 

the model's accuracy is contingent upon the 

quality and consistency of input data an 

ongoing challenge in Afghanistan due to 

underreporting and limited testing (1, 13). 

Second, training DINNs can be 

computationally intensive, particularly for 

large-scale or real-time applications (4). 

Traditional compartmental models struggle 

to capture time-varying transmission due to 

their reliance on constant parameters. This 

study acknowledged this challenge in the 

Introduction and discussed linear 

parameter-varying (LPV) models as a 

conceptual solution (11). These models 

enable dynamic adaptation of transmission 

parameters and, when incorporated into 

hybrid frameworks like DINNs, enhance 

realism and forecasting power. 

Importantly, the results from the sensitivity 

analysis have practical policy implications. 

For instance, the model shows high 

sensitivity to changes in the incubation rate 

(σ), recovery rate (γ), and transmission rate 

(β). Public health measures that can 

influence these parameters—such as early 

testing and isolation (which reduces σ), 

improved treatment capacity (affecting γ), 

and social distancing or mask mandates 

(reducing β)—could substantially alter 

epidemic outcomes. Therefore, 

policymakers in Afghanistan should 

prioritize investments in early detection 

infrastructure and public communication 

strategies to modulate these key parameters 

effectively (9, 10, 22). 

Furthermore, incorporating mobility data 

and seroprevalence surveys in future 

versions of the model could enhance its 

accuracy and applicability (18). Bayesian 

approaches may also be employed to 

quantify predictive uncertainty, thereby 

supporting risk-informed decision-making 

in health policy planning (18, 19). 

 

Conclusion 
 

This study demonstrated the effectiveness 

of dynamics-informed neural networks 

(DINNs) integrated with an SEIR-V 

framework in modeling the spread and 

vaccination dynamics of COVID-19 in 

Afghanistan. By embedding the SEIR-V 

differential equations into the neural 

network architecture and training the model 

on real-world epidemiological data, the 

DINNs approach achieved high prediction 

accuracy, particularly for the infected and 

vaccinated compartments, as evidenced by 

low error metrics and high 𝑅² scores. 

The model's ability to dynamically estimate 

key parameters—such as transmission, 

recovery, and vaccination rates—offers a 

substantial advantage over traditional static 

models, particularly in data-scarce and 

under-reported settings like Afghanistan. 

Moreover, the parameter sensitivity 

analysis highlights critical intervention 

points that can inform public health 

strategies, such as enhancing early 

detection, accelerating vaccination 

campaigns, and promoting non-

pharmaceutical interventions to reduce 

transmission. 

This research also reinforces the value of 

incorporating flexible modeling 

techniques, such as linear parameter-

varying (LPV) systems and hybrid physics-

informed architectures, to better reflect 

real-time epidemic dynamics. Future work 

could benefit from integrating mobility and 

serological data, as well as employing 

Bayesian methods to quantify uncertainty 

in predictions. 

Overall, this study underscores the potential 

of data-driven, dynamics-informed 

modeling frameworks to support real-time 

public health decision-making and 
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epidemic preparedness in low-resource 

environments. 
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